
Accelerating Malware Detection

via a

Graphics Processing Unit

THESIS

Nicholas S. Kovach, Civ

AFIT/GCO/ENG/10-12

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense, or
the United States Government.

AFIT/GCO/ENG/10-12

Accelerating Malware Detection

via a

Graphics Processing Unit

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science

Nicholas S. Kovach, BSCS

Civ

September 2010

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GCO/ENG/10-12

Abstract

Real-time malware analysis requires processing large amounts of data storage

to look for suspicious files. This is a time consuming process that (requires a large

amount of processing power) often affecting other applications running on a personal

computer. This research investigates the viability of using Graphic Processing Units

(GPUs), present in many personal computers, to distribute the workload normally

precessed by the standard Central Processing Unit (CPU).

Three experiments are conducted using an inductry standard GPU, the NVIDIA

GeForce 9500 GT card. The goal of the first experiment is to find the optimal number

of threads per block for calculating MD5 file hash. The goal of the second experiment

is to find the optimal number of threads per block for searching an MD5 hash database

for matches. In the third experiment, the size of the executable, executable type (be-

nign or malicious), and processing hardware are varied in a full factorial experimental

design. The experiment records if the file is benign or malicious and measure the

time required to identify the executable. This information can be used to analyze the

performance of GPU hardware against CPU hardware.

Experimental results show that a GPU can calculate a MD5 signature hash and

scan a database of malicious signatures 82% faster then a CPU for files between 0 -

96 kB. If the file size is increased to 97 - 192 kB the GPU is 85% faster than the CPU.

This demonstrates that the GPU can provide a greater performance increase over a

CPU. These results could help achieve faster anti-malware products, faster network

intrusion detection system response times, and faster firewall applications.

iv

To my parents, who started me on the path of knowledge.

v

Acknowledgements

I would like to thank my advisor, Dr. Barry Mullins, for the support and

encouragement to follow my ideas. I would also like to thank Dr. Michael Grimaila

and Dr. Gilbert Peterson for their support and feedback.

I owe a special thank you to Ali and Teigan for being supportive and under-

standing throughout the course of this thesis effort.

Nicholas S. Kovach

vi

Table of Contents
Page

Abstract . iv

Acknowledgements . vi

List of Figures . ix

List of Tables . x

List of Abbreviations . xi

I. Introduction . 1
1.1 Motivation . 1
1.2 Overview and Goals . 2
1.3 Thesis Layout . 3

II. Literature Review and Related Research 4
2.1 Portable Executable Files 4
2.2 Static Malware Detection 7
2.3 MD5 . 11
2.4 Intel Pentium 4 (CPU) 13

2.5 PCI Express 2.0 . 14

2.6 Graphical Processing Unit (GPU) 16

2.6.1 NVIDIA GPU Basics 17
2.6.2 CUDA by NVIDIA 23

2.6.3 GeForce 9500 GT 29
2.7 ClamAV Engine . 30

2.8 Related Work . 31
2.9 Summary . 35

III. Methodology . 36

3.1 Goals and Hypothesis 36

3.2 Approach . 38

3.2.1 Software . 38
3.2.2 Malicious and Benign Files 39

3.2.3 Signature Databases 40

3.2.4 GPU ID Algorithm 41

3.3 System Boundaries . 41

3.4 System Services . 43

vii

Page

3.5 Workload . 44
3.6 Performance Metrics . 44

3.6.1 Identification Result 44
3.6.2 Execution Time 44

3.7 System Parameters . 45

3.8 Factors . 45
3.9 Evaluation Technique 46

3.10 Experimental Design . 49

3.10.1 Experiment 1 49

3.10.2 Experiment 2 49

3.10.3 Experiment 3 50

3.11 Methodology Summary 50

IV. Results and Analysis . 51

4.1 Results and Analysis of Experiment 1 51

4.2 Results and Analysis of Experiment 2 53

4.3 Results and Analysis of Experiment 3 55

4.4 Overall Analysis . 59

4.5 Summary . 60

V. Conclusions . 61
5.1 Conclusions of Research 61

5.1.1 Goal #1: Correctly Detect Malicious and Benign
File Using Predetermined Signatures. 61

5.1.2 Goal #2: Measure the Performance of a GPU. . 61

5.1.3 Goal #3: Find the Optimal Number of Threads
per Block . 62

5.2 Significance of Research 62

5.3 Recommendations for Future Research 63

VI. Experimental Data . 65

6.1 Experimental Data of Experiment 1 65

6.2 Experimental Data of Experiment 2 70

6.3 Experimental Data of Experiment 3 75

Bibliography . 78

Index . 82

viii

List of Figures
Figure Page

2.1. Overview of the PE File Format Structure [Pie94] [Pie02] [Szo05]. 5

2.2. Overview of a PE File in Memory [Pie02]. 7

2.3. Malware Protection Process. 9

2.4. MD5 Operation [Riv92]. 13

2.5. PCI Express in a Hypothetical System. 15

2.6. CPU and GPU similarities [NVI09b]. 16

2.7. CUDA Grid, Thread Blocks, and Threads [NVI09b]. 18

2.8. CUDA Example Code: Thread Divergence. 19

2.9. Overview of Visible Memory under CUDA [NVI09b]. 21

2.10. CUDA Nvcc Paradigm [NVI09b]. 25

2.11. CUDA Software Stack [NVI09b]. 27

3.1. Overview of the GPU ID System 39

3.2. Overview of the GPU ID System Implementation on a CPU. . 40

3.3. The GPU ID System. 42

3.4. Component Under Test (CUT). 42

4.1. Mean MD5 hash times for 1 - 256 threads per block on a GPU. 53

4.2. Mean database search times and confidence intervals for 256 -

512 threads per block on a GPU. 55

4.3. Time Required for the GPU ID Program to Identify Files. . . . 58

ix

List of Tables
Table Page

2.1. CUDA Memory Characteristics [NVI09c] [NVI09b]. 21

2.2. CUDA Driver API Objects [NVI09b]. 28

2.3. XFX 9500 GT Hardware Specifications [XFX09]. 30

2.4. CUDA Memory Characteristics. 30

2.5. ClamAV Databases with Purpose and Signature Format [Cla09b]. 32

3.1. Graphic Processing Unit IDentifier Experiment Summary. . . . 37

3.2. Factors and Associated Levels for Experiments 1 and 2. 46

3.3. Factors and Associated Levels for Experiment 3. 47

3.4. PC Specification Overview. 48

3.5. GeForce 9500 GT Specification Overview. 48

4.1. Probability of Correctly Identifying Files. 56

4.2. GPU ID Times (ms). 56

4.3. CPU Implementation Times (ms). 57

4.4. Hypothesis Testing on Performance of the CPU. 58

4.5. Percentage Change of Configurations of a GPU from a CPU. . 59

F.1 Optimal Number of Threads Per Block forExperiment 1. 70

F.2 Optimal Number of Threads Per Block forExperiment 2. 75

F.3 Execution Time for Experiment 3. 77

x

List of Abbreviations
Abbreviation Page

CPU Central Processing Unit 1

GPU Graphics Processing Unit 1

GPU ID Graphic Processing Unit IDentifier 2

PC Personal Computer . 2

GPGPU General Purpose Graphics Processing Unit 4

GPU Graphics Processing Unit 4

PE Portable Executable . 4

COFF Common Object File Format 4

CPU Central Processing Unit 4

OS Operating System . 6

RVA Relative Virtual Address 6

DLL Dynamically Loaded Library 6

IAT Import Address Table . 6

MD5 Message Digest 5 . 9

RFC Request for Comments . 12

ASCII American Standard Code for Information Interchange . . . 13

L1 Level 1 . 13

MB Megabyte . 13

L2 Level 2 . 13

SSE2 Streaming SIMD Extensions 2 13

SSE3 Streaming SIMD Extensions 3 13

HT Hyper-Threading . 13

BIOS Basic Input/Output System 14

PCIe PCI Express . 14

Gbit Gigabits . 14

xi

Abbreviation Page

TLPs Transaction Layer Packets 15

SIMD Single-Instruction Multiple-Data 17

SIMT Single Instruction Multiple Thread 17

SPMD Single Program Multiple Data 17

MIMD Multiple Instructions Multiple Data 17

DRAM Dynamic Random Access Memory 22

CUDA Compute Unified Device Architecture 23

API Application Programming Interface 24

PTX Parallel Thread Execution 24

GF GeForce . 48

DX DirectX . 48

xii

Accelerating Malware Detection

via a

Graphics Processing Unit

I. Introduction

1.1 Motivation

Everyday, data are created, collected, stored, searched, and replicated. As the

amount of data grows, so does the time required to detect data that has been infected

by malicious worms, viruses, trojans, spyware, and adware. Due to the large amount

of time required to scan files and compare them to a database of known signatures,

the user will experience a decrease in the responsiveness of their PC. As a result,

they may disable the protection application such as Symantec Anti-virus [Vak10] or

McAfee Anti-virus [McA09]. If the product is disabled, then the user is not protected

against known malicious threats. Slow scanning times also mean that the malicious

code, if executed, has more time to hide or infect other files in the system.

To help reduce the large amount of Central Processing Unit (CPU) resources

anti-virus products need, the goal of this research is to offload part of the scanning and

searching for signature matches to a mainstream Graphics Processing Unit (GPU).

Most applications do not take advantage of GPUs for non-graphical tasks, even though

they are openly available for all newer computers [NVI09b] and are often not fully

utilized by the average computer user [ViG07]. The system developed in this research

is designed to use the unused power of the GPU by reducing CPU resource demand

and increase system security by allowing the file scanning to complete without the

user noticing. Because only one video card driver can be loaded by Windows XP,

the GPU was still responsible for displaying graphics on a terminal, but the monitor

was turned off during the experiments to minimize the impact of graphical display

on the results. If the graphical display is modified, such as changing the resolution,

1

then memory on the GPU could be modified to support the display and cause any

application running on the GPU to return an error.

GPUs at one time were only available to handle graphics. Over time they

have evolved into a general purpose GPU, allowing code to be written and directly

executed on the GPU. This allows applications to directly use the GPU to offload

computational tasks without consuming resources of the CPU.

1.2 Overview and Goals

This research focuses on the design and analysis of a malware detection tool,

called Graphic Processing Unit IDentifier (GPU ID), that uses the parallel power of

the GPU to scan files by calculating a MD5 file hash and then searching a database of

signatures from malicious files. The GPU ID system is designed to be used on a per-

sonal computer (PC) but may be expanded to gateway monitoring systems. For each

file, the GPU ID system calculates a MD5 file hash and then searches the malware

signature database. If the hash is in the database then the file is considered mali-

cious, otherwise the file is considered benign. The calculated MD5 hashes are never

transfered back to the CPU from the GPU device. Instead a set of flags indicating

the malicious status of each file is transfered to the CPU and the user is alerted to

files that match a database entry.

There are three goals for this research. The first goal is to find the optimal

number of threads per block for calculating MD5 file hashes. To accomplish this goal

a GeForce 9500 GT GPU is used to calculate MD5 file hashes, while the number of

threads per block is varied. The second goal is to find the optimal number of threads

per block for searching a MD5 signature database for hash matches. To accomplish

this goal the Clam AV [Cla09a] MD5 signature database is used and modified, and a

GeForce 9500 GT GPU is used to calculate MD5 file hashes and search the signature

database, while the number of threads per block is varied only for the search part of

the program. The third goal is to measure the performance of a GPU while detecting

malware. To accomplish this goal the time to calculate MD5 file hashes and search

2

the signature database are measured for groups of files and then compared to the

times required for a CPU to complete the same task.

1.3 Thesis Layout

This chapter introduces the research topic, provides the motivation, and outlines

the goals of the research. Chapter 2 provides background information on Portable

Executable (PE) Files, static malware detection, the MD5 algorithm, CUDA GPU

basics, and the GeForce 9500 GT GPU. The methodology used to develop, set up,

configure, and conduct the experiment to test the performance of the GPU is out-

lined in Chapter 3. The experimental results are presented and analysis in Chapter

4. Chapter 5 provides a discussion of the conclusions drawn from the experimental

results, the significance of the GPU ID system, and possible areas for future research.

Appendix VI contains the raw data collected during the experiment.

3

II. Literature Review and Related Research

This chapter describes the background and related work for detecting malware

with a GPGPU, referred to hereafter as GPU. Background is provided in Sec-

tions 2.1 through 2.7. Sections 2.1 through 2.3 provide background on PE files, static

malware detection, and MD5 fingerprinting. Section 2.4 provides a detailed overview

of the Intel Pentium Architecture, and Section 2.5 provides an overview of the PCI

Express 2.0 I/O bus architecture. The NVIDIA GPU and CUDA architectures are

discussed in Section 2.6, followed by Section 2.7 with an overview of Clam AV anti-

virus components. Section 2.8 discusses related work with GPU malware detection.

2.1 Portable Executable Files

The Portable Executable (PE) file format is designed for use on all Microsoft

Win32 operating systems. The format defines the structure of the executable file data

and how the file data is interpreted. The PE file format is expected to remain part

of Microsoft’s operating systems for the future [Szo05]. The PE format is an updated

version of the common object file format (COFF) [Mic06]. Microsoft released a new

format PE+, or PE32+, for use on Win64 operating systems with the release of

Windows XP 64-bit [Mic08]. The PE+ format is similar to the PE format except for

modification to support 64-bit operating systems.

As shown in Figure 2.1, a PE file is composed of many components. The first

component is an MS-DOS header and stub program. The stub program displays an

error message, “This program cannot be run in MS-DOS mode” [Pie94]. The stub

program provides compatibility for 16-bit Windows systems by not allowing the file to

be executed in DOS [Szo05]. The second component, after the MS-DOS header and

stub program, is the PE header, which starts with the constant of ‘PE00’ [Pie02]. The

PE header contains information about the intended type of CPU, number of sections,

characteristics, size of image, and the checksum of the PE file.

Between the headers and raw data of the sections is the section table. The

section table contains a header for each section in the PE file. The section header

4

MS-DOS MZ Header

.text Section Header

PE File Optional Header

PE File Header

"PE" File Signature

MS-DOS Stub Program

.edata Section

.debug Section Header

:
:

.rsrc Section Header

.data Section Header

.text Section

.debug Section

.rsrc Section

.data Section

.idata Section

.edata Section Header

.idata Section Header

.reloc Section Header

.reloc Section

Higher
offsets

Section
 Table

PE File

:
:

Figure 2.1: Overview of the PE File Format Structure [Pie94] [Pie02] [Szo05].

contains the name, size, address information and attributes for the section. The

Microsoft Windows’ memory manger will use the information in the section header

to determine if the section is readable, writable, or executable [Eil05].

Common PE file sections include: .text, .data, .bss, .rsrc, .idata, .edata, .reloc,

and .debug. The .text section contains the actual executable code and is normally the

first section in a PE file [Szo05]. The PE file format is designed to allow executable

code to be separated from data. The executable flag is set on the .text section, but the

5

writable flag is not set because data is kept in the .data section, so there is no need to

write to the .text section. This helps to keep the running program from overwriting

code instructions. Data is stored in the .data section and the .bss section. The .data

section contains initialized data, while the .bss section contains uninitialized static

and global variables. Resources, such as images, menus, default initialization strings,

etc., for the application are stored in the .rsrc section. The import table, containing

a list of functions used from external libraries, is located in the .idata section, and

functions exported for use by other applications are located in the .edata section. The

PE format defines a .reloc section containing a base relocation table; this section has

been removed from Windows 9x and later operating systems by Microsoft [Szo05].

Any debug information about the executable is located in the .debug section. This

information is optional and may not be present in all PE executables because including

it will increase the size of the executable.

The structure of a PE file loaded into memory looks similar to the PE file on

a disk [Szo05]. Figure 2.2 shows the structure of a PE file mapped into memory.

The headers and section layout remain the same, but the individual sections are

page-aligned in memory. This allows the OS to assign different access permissions

to the resulting pages. Sections are not page aligned on disk to avoid wasting disk

space [Pie02]. When a PE file is compiled, all addresses are compiled to a fixed base

memory address. The OS will try to load the PE file to this memory address, but

if the address is not available the OS will choose another address. To avoid having

fixed memory addresses in PE files that need to be updated if the OS cannot load the

file into the fixed base memory address, Relative Virtual Addresses (RVA) are used.

A RVA is just an offset in memory, which when added to the address where the PE

file was actually loaded by the OS, gives the actual memory address needed by the

executable code in the PE file [Pie02].

Function calls to Dynamically Loaded Libraries (DLL) are handled by the Im-

port Address Table (IAT). The IAT contains a list of all functions (symbols) and the

respective memory address for the function being imported by the application. When

6

MS-DOS MZ Header

Section Table

PE File Optional Header

PE File Header

"PE" File Signature

MS-DOS Stub Program

Other Sections

.text Section

.debug Section

.data Section

.reloc Section

Higher
offsets

PE File

MS-DOS Header

.data Section

.text Section

Section Table

PE Header

Other Sections

Higher
addresses

In Memory

Figure 2.2: Overview of a PE File in Memory [Pie02].

the PE file is loaded into memory, the memory addresses are overwritten with the

actual memory addresses of the symbols by the system loader [Mic08]. This memory

address represents the address that is invoked when a call is made to imported func-

tions [Pie02]. Since the PE file is mapped into linear address space, the application

only knows the base address of where the executable was mapped into memory. By

using the IAT, only the IAT has to be updated instead of the individual function calls

within the executable [Szo05].

2.2 Static Malware Detection

Signature-based detection methods of malware have long been used by commer-

cial anti-virus software. This type of detection method has been used since the late

1980’s with only optimizations and improvements in algorithms since then [For04].

Commercial anti-virus software is commonly used to protect home and business com-

puting systems from malware or unwanted programs. Generally, signature detection

7

involves the inspection of files (usually executables) on digital storage mediums for

predefined signatures [Kel09]. Recently, other file formats such as DOC, PPT, XLS,

and PDF have been used to carry malware and are also inspected by commercial

anti-virus software [MIT07] [MIT09b] [MIT09a].

Signatures are generated based on the composition or attribute(s) of a partic-

ular piece of malware, so the signatures are unique to that piece of malware [For04].

Signatures are generated based on either the whole file or individual code strings of

the file, which signify malware behavior by applying a hashing algorithm to the file or

individual sections of the file [Hey07]. In the case of PE files, the sections are identi-

fied by the information in the section table of the PE file. The predefined signature is

then compared to live signatures generated by the anti-virus software tool, using the

same hashing algorithm in real time. If there is a match, then file execution access

on the intended machine is blocked, the file is deleted, or the user is alerted [Hey07].

This process is known as black listing.

Black listing may be reversed for trusted files in a process known as white listing.

The signatures are still generated based on the file or individual code strings of the

file, but if the on-the-fly and predefined signatures match, then file execution access

is granted to the intended machine, otherwise the file execution is blocked [McA09].

White listing provides more protection than black listing, but decreases usability of

the intended machine because the user no longer chooses which applications to trust.

Another version of white listing involves signing the executable and then allowing

only executables digitally signed by a trusted party to be executed. This technique is

used in Microsoft Windows Operating Systems (XP, Vista, and Windows 7) to verify

certified system drivers [Mic07a].

Malware may use a combination of methods to hide itself from signature-based

detection software. Such methods include: altering the source code, using a packer,

obfuscation, and editing the executable code [Kel09]. Each time one of these methods

is used by the malware, a new signature must be generated and installed in the

8

Birth
(Malware Released)

Infection
(Systems Compromised)

Discovery
(Malware is Identified)

Signature Generated
for Static Detection

End-user Installs
Signature

System is Protected
From Identified Malware

Figure 2.3: Malware Protection Process.

signature-based detection software, requiring interaction by the user or the system to

be connected to a network to access the update server to automatically install the new

signatures. This is in addition to the time required to discover the modified malware

and generate a new signature. Figure 2.3 shows the process of protecting a system

with static detection. Once the malware is released in the wild, it must infect, or

compromise, vulnerable systems. A compromised system or Honeypot then discovers

the malware and submits it for analysis. After analysis, a signature is generated. This

signature must be installed by the user before the system is protected.

Hash algorithms, such as MD5 [Riv92], are often used to create signatures of

malware [Cla09b]. The hash algorithm produces a shorter representation of the file

or file attributes into a fixed length fingerprint. The fixed length fingerprint is then

used as the signature. In order to be used in fingerprinting the hash algorithm is

required to produce large changes in the hash result for small changes in the file or

file attributes. Using hashes to fingerprint files is not always infallible.

9

False positives occur when a file is identified as malicious when it really contains

benign code [Vak10]. Anti-virus scanners, using static detection techniques, may give

a large amount of false positive alerts [NAs02]. These alerts can be costly in terms of

time and resources for individuals and organizations to investigate each misidentified

file [YWL07] [Vak10]. False positives are possible, since the hashes used as fingerprints

are a fixed length and the number of possible strings is infinite. According to the

Pigeon Hole Principle, because the number of fingerprints is less than the number of

possible strings, multiple strings will be represented by the same fingerprint. False

positives can be reduced by using specific signatures [Szo05], such as generating the

fingerprint by calculating the file hash of the malicious file. This would reduce the

number of false positives, but may increase the number of false negatives (discussed

later), in the case where the malicious file varies slightly from one instance to the

next [Pau08]. A recent example of a false positive is when a signature in a McAfee anti-

virus product identified the core Windows XP binary svchost.exe as a virus crippling

the operating system [McA10].

False negatives occur when a file is identified as benign when it really con-

tains malicious code [Pau08]. This happens when a signature is missing from the

virus database. This is possible for new malware or in cases where the database is

outdated (i.e., the user does not regularly update the database to learn about new

viruses). In order for static detection to be useful the malware must first be an-

alyzed, a signature generated, and then the signature must be added to the users

database. Here, the initial detection of the malware is required for the signature to

be generated. Without the initial detection, anti-virus protection would be difficult

or impossible [Coh86] [Coh87]. False negatives can be reduced by using generic signa-

tures [Szo05]. A generic signature may be generated by basing the hash fingerprint on

several malicious attributes shared by similar malicious software, if these attributes

are found when scanning then there is a chance the file is malicious. Generic signatures

have the side-effect of increasing false positives.

10

Using a combination of false positive and false negative reduction techniques

lowers the chances of unwanted alerts (false positives) and infections (false negatives)

[NAs02]. In addition, white listing of critical system files reduces the chance of one

being identified as malicious.

2.3 MD5

The MD5 message digest algorithm was developed by Ronald Rivest in 1992

[Riv92]. It was developed for applications where a sequence of bytes, message, file,

or other data must be represented by a small fixed length identifier. MD5 takes

in a piece of data, of an arbitrary length, and outputs a 128-bit message digest.

The algorithm is designed to be: easy to compute the digest; hard to compute the

message from the digest; and hard to find two messages with the same digest [StL07].

Although it is known that many attacks exist on the MD5 algorithm to produce

collisions [XiH05] [YJD09] or two messages with the same digest, it still provides a

useful method for fingerprinting a sequence of bytes or files.

The MD5 algorithm starts by padding the raw data until its length is congruent

to 448, modulo 512. A single ’1’ bit followed by enough ’0’ bits are used in the

padding. At least one bit, is appended and at most 512 bits are appended to the

raw data. Next, the length of the data before padding is appended to the end of

the padded result. The length is represented as two bytes with the lower order byte

added first. If the length of the data exceeds 264, then only the low-order 64 bits of

the length are appended. Four 32-bit registers are initialized to the following constant

initialization values in hexadecimal with low-order bytes first [Riv92]:

GA = 01 23 45 67

GB = 89 ab cd ef

GC = fe dc ba 98

GD = 76 54 32 10

11

Four functions map three of the 32-bit registers to one 32-bit register. The

functions are as follows [Riv92]:

F(B, C, D) = (B ∧ C) ∨ (¬B ∧D)

G(B, C, D) = (B ∧D) ∨ C¬D

H(B, C, D) = B ⊗ C ⊗D

I(B, C, D) = C ⊗ (B ∨ ¬D)

The data, message (M), is processed by the MD5 algorithm in 512-bit (64-byte)

chunks. One MD5 operation is completed for each byte. An MD5 operation is shown

in Figure 2.4 and starts with the local registers A, B, C, and D being initialized with

the values from the global registers GA, GB, GC, and GD. For each byte (represented

by [i]) of the 64 bytes in the chunk, a function from above is selected during each

operation. For bytes 0 -15 function F is used, bytes 16 - 31 function G, bytes 32 -

47 function H, and bytes 48-63 function I. Each function takes registers B, C, and D

as inputs. A fixed constant K is added to the byte from the message, the constant

for each byte in a chunk is listed in RFC 1321 [Riv92]. A left shift (<<s) is also

applied; the amount of the shifts are listed in RFC 1321 as well. The registers are

then updated as follows:

temp (register)= D

D = C

C = B

B = B + (A + function(B,C,D) + k[i] + M[i])<<s[i]

A = temp

After all 64 bytes have been processed, the results in A, B, C, D and are added

to the results from previous 64-byte chunks and stored in registers GA, GB, GC, GD

(i.e., GA = GA + A, GB = GB + B, etc.). The message is processed in this manner

until there are no more chunks left. The MD5 digest output is from the registers

12

<<s

F,G,
H or I

A B C D

A B C D

K i

M i

denotes addition modulo 232

Figure 2.4: MD5 Operation [Riv92].

GA, GB, GC, GD in alphabetical order. The digest output is often converted to a

32 character ASCII hexadecimal value for readability. The small 32 character ASCII

value represents a large file, making MD5 a good algorithm for fingerprinting files in

malware detection.

2.4 Intel Pentium 4 (CPU)

The Intel Pentium 4 processor, or central processing unit (CPU), is manufac-

tured using Intel’s 90nm process supporting speeds of 2.40 - 2.80 GHz [Int05]. The

processor has 16 KB of Level 1 (L1) data cache and 1 MB of Level 2 (L2) cache. The

processor has a front side bus of 800 MHz, with support for Streaming SIMD Ex-

tensions 2 (SSE2) and Streaming SIMD Extensions 3(SSE3). SSE2 defines hardware

instructions for 64-bit floating point operations [Int00], while SSE3 defines hardware

instructions for thread management [Int08].

The Pentium 4 supports Hyper-Threading (HT) technology which allows a single

physical processor to function as two logical processors [Int05]. Each logical proces-

sor has its own control registers, while sharing caches, execution units, and buses.

13

HT technology is designed to use processor resources more efficiently and improve

performance of multi-threaded software [Int10a]. To use HT on the Pentium 4, a

HT-enabled BIOS and operating system such as Microsoft Windows XP or newer is

required.

The Pentium 4 was selected for this research because of its availability and abil-

ity to run common operating systems, such as Windows XP [Mic01], Vista [Mic07b],

Windows 7 [Mic10], and many distributions of Linux [Ubu10] [Dam10] [Pup09]. The

Hyper-Threading technology is enabled on the Pentium 4 to use system resources

more efficiently.

2.5 PCI Express 2.0

The latest NVIDIA GPUs, including the GeForce 9500 GT, connect to the

motherboard through a PCI Express 2.0 (PCIe) bus. PCIe is a third generation

high performance I/O bus designed for high bandwidth peripherals (end points), such

as video controllers, memory, and disk drives [BAS04]. The bus is implemented

as a serial point-to-point architecture allowing communication between two PCIe

devices [BAS04]. PCIe supports data rates of 128 Gbit/sec [Int10b].

The PCIe fabric is comprised of a root complex, any number of switches, and

any number of endpoints. The root complex connects CPUs and memory subsystem

to the PCIe fabric. PCIe switches forward packets between endpoints and the root

complex. Endpoints are devices that complete PCIe transactions (transmission and

reception of requests), but are not the root complex or switches.

The root complex controls and routes high-throughput bus packet traffic be-

tween endpoints [BAS04]. The root complex also transports PCIe packets from end-

points to the memory controller for direct memory access (DMA) operations. As

shown in Figure 2.5, processors connect to the root complex through the front side

bus. High performance peripherals such as video cards and main memory controllers

connect directly to the root complex [BAS04]. Other peripherals and PCIe expansion

14

Processor Processor

Root ComplexVideo Controller Main Memory

Slot Ethernet Sata Controller

Slot

Slot

Switch

FSB

Disk
 Array

PCI Express Link

Figure 2.5: PCI Express in a Hypothetical System.

slots are connected with the system through PCIe switches [BAS04]. The switches

are responsible for routing commands and data packets between various peripherals

and the root complex.

Communication on the PCIe bus takes place with the transmission and reception

(transaction) of transaction layer packets (TLPs). There are two types of transactions:

non-posted and posted. In non-posted transactions a TLP request packet is sent to

an endpoint, after the endpoint receives the request packet, a TLP completion packet

is sent back to the original endpoint [BAS04]. The TLP completion packet confirms

the request TLP was received. Read transactions contain the requested data in the

completion TLP, while write transactions contain data in the request TLP [BAS04]. In

posted transactions, a TLP request packet is sent to an endpoint, while no completion

packets are sent back [BAS04]. Posted transactions are optimized for performance in

quick transaction completion, at the expense of the requesting endpoint not knowing

if the request was completed successfully [BAS04]. Request TLPs may contain data

in posted transactions, but it is not required.

15

 Control

 Cache

 DRAM

ALU ALU

ALUALU

 DRAM

CPU GPU

Figure 2.6: CPU and GPU similarities [NVI09b].

Each byte of data is converted into a 10 bit code (8b/10b encoding). 8b/10b

encoding gives the PCIe bus greater robustness by allowing AC coupling of the dif-

ferential pairs of signals (a transmit pair and a receive pair) and an embedded clock

rate that improves as silicon technology is refined [PCI10]. The encoding scheme

creates 25% additional overhead. PCIe 3.0 is expected to use a 128b/130b encoding

scheme [PCI10]. This will reduce the overhead to about 1.6%. The expected over-

head will allow higher bandwidths, decreasing the delay of memory reads and writes

in global memory while increasing GPU performance.

2.6 Graphical Processing Unit (GPU)

The GPU is similar to a CPU, but is designed to handle streaming data [NVI09b].

As shown in Figure 2.6, a GPU devotes more transistors to data processing, whereas a

CPU devotes more to data caching and flow control [NVI09b]. Since streaming data is

already sequential, or cache-coherent, the GPU does not need a large amount of cache.

This gives the GPU an advantage in highly arithmetic-intense parallel computations,

where the number of arithmetic operations are far greater than memory operations.

Arithmetic calculations hide memory latency on a GPU instead of data caches hiding

memory latency on a CPU [NVI09b]. This means multi-threading is used to keep the

GPU busy between costly memory accesses instead of fast data caches like a CPU.

16

Previous GPU architectures were based on a single instruction multiple data

(SIMD) programming model, but recent GPU architectures, including CUDA (dis-

cussed later) [NVI09b], are based on a single instruction, multiple thread (SIMT)

programming model. In SIMT, hardware multithreading leverages thread-level par-

allelism. SIMT is similar to single instruction, multiple data (SIMD) except pro-

grammers have the ability to write code for coordinated threads and independent

threads. This is referred to as a single program, multiple data (SPMD) program-

ming model; which is a subset of the multiple instructions, multiple data (MIMD)

programming model. SPMD consists of multiple SIMT multiprocessors running the

same program, but each multiprocessor may execute a different instruction [HTA08].

In addition, each multiprocessor may have many threads, each operating on different

data [NVI09b].

The NVIDIA GPU contains multi-threaded Streaming Multiprocessors (SMs)

[NVI09b]. The number of SMs varies by version of the GPU; the GeForce 9500GT

from NVIDIA (discussed later) contains four SMs. Individually a multiprocessor ex-

ecutes one instruction at a time, but each thread may operate on different data or

choose to idle while other threads execute the instruction. This means the multipro-

cessor follows the SIMD programming model. Since each multiprocessor may execute

a different instruction, the GPU as a whole follows the SPMD programming model.

2.6.1 NVIDIA GPU Basics. CUDA (discussed later) allows functions, called

kernels, to be defined. A kernel is the entry point for the code to be executed on the

GPU. On the GPU the kernel is executed by a grid of equally sized thread blocks

[NVI09b]. Figure 2.7 shows the CUDA object abstractions, where a grid is made up

of thread blocks and thread blocks are made up of multiple CUDA threads. A grid is

a group of blocks with no synchronization between individual blocks. There is only

one grid per kernel, allowing only one kernel to be executed at a time. Each kernel

may be executed by many lightweight CUDA threads.

17

Figure 2.7: CUDA Grid, Thread Blocks, and Threads [NVI09b].

CUDA assumes all threads execute on a separate secondary device, such as a

GPU, from the central processor; with the secondary device operating as a coprocessor

to the central processor [NVI09b]. All threads created with CUDA are lightweight,

with little creation overhead and fast context switching. Threads are created, man-

aged, scheduled, and executed as a group of 32 parallel threads called a warp. Each

individual thread of a warp will start with the same program address, but will have its

own instruction address counter and register state [NVI09b]. A thread will execute on

a single multiprocessor and will not migrate to another after it has been created. Ev-

ery thread has access to global, shared, local, texture and constant memory. Threads

will also have registers (8192 registers divided equally by all threads in a block).

Conditional branching statements should be avoided within a thread context

because all threads walk through each of the possible execution paths caused by

18

__global__ void function(int4* x) {

 if(threadIdx.x >= 4) {

 // Code Section 1
 } else {

 // Code Section 2
 }
}

Figure 2.8: CUDA Example Code: Thread Divergence.

conditional branching. For example, the code in Figure 2.8 shows an example CUDA

GPU kernel. The variable threadIdx.x refers to the thread ID and is provided by

the CUDA runtime. If the conditional fails for some threads but not all, then all

threads will walk through code section 1, with the failing threads idling. After code

section 1 finishes, code section 2 is executed with previously idle threads executing and

previously executing threads idling. Maximum efficiency is reached when all threads

in a warp agree on the execution path [NVI09b].

Thread blocks are blocks of CUDA threads running the same kernel. Each

block can contain 512 threads due to memory limits. The number of threads per

block should be a multiple of the warp size to maximize performance [NVI09b]. Each

thread block is required to execute independently of other thread blocks and must

be able to execute in series or parallel with other blocks. Thread blocks execute

independently to allow for scalability; a GPU with more cores can execute a program

faster than a GPU with fewer cores [NVI09b]. Because of the independence of thread

blocks, conditional statements may be used within the context of a thread block with

no performance impact.

Several thread blocks reside concurrently on one multiprocessor, limited only

by the amount of registers and shared memory available on the multiprocessor. The

registers are partitioned among all threads in a block equally and shared memory

is partitioned among all thread blocks on the multiprocessor [NVI09b]. Threads in

19

a block may share data and coordinate through shared memory, while threads from

different blocks may not share data or coordinate. The CUDA architecture assumes

all thread blocks run to completion without pre-emption.

A CUDA program should create as many thread blocks as multiprocessors on

the device. This allows each multiprocessor to have a task (a kernel to execute). It

is possible to execute fewer thread blocks than multiprocessors but doing so reduces

performance. If there is only one block per multiprocessor, the multiprocessor may

be forced to idle during thread synchronization and device memory reads [NVI09b].

Therefore it is more efficient to have as many thread blocks as possible allowing

the GPU hardware to efficiently manage thread synchronization and device memory

reads/writes.

Memory space available to a GPU includes global, local, shared, constant, and

texture memory. The host and device are responsible for managing their own memory

spaces in DRAM. Table 2.1 shows the characteristics of the available memory under

CUDA 1.1, while Figure 2.9 shows a graphical representation of the memory visibility

in relation to grids, thread blocks, and threads. The global, constant, and texture

memory are persisted across kernel launches by the same application and can be

accessed by all active threads on the GPU as well as the host CPU, because each

is located off the GPU chip. Texture and constant memory are the only memory

spaces cached on a GPU, but can only be read by the GPU with no write access

allowed [NVI09b]. A multiprocessor takes four clock cycles to issue one memory

instruction for a warp when accessing global or local memory [NVI09b]. Each type

of memory is discussed in greater detail in the following paragraphs. Additional

memory is available on chip through shared memory and registers. Shared memory

can be accessed by all threads in the same thread block, while registers may only be

accessed by the thread the register was assigned to when the kernel was launched.

Global memory is accessible by all active threads and the host CPU. The data

lifetime (the period of time data remains in memory) of the global memory is from

20

Table 2.1: CUDA Memory Characteristics [NVI09c] [NVI09b].

Memory Location Cached Access Visibility

Registers on chip Resident Read/Write single thread
Global off chip No Read/Write All threads and host CPU
Shared on chip Resident Read/Write All threads in a single block
Local off chip No Read/Write Single thread

Texture off chip Yes Read All threads and host CPU
Constant off chip Yes Read All threads and host CPU

Block(0,0)

Registers Registers

Shared Memory

Thread (0,0) Thread (1,0)

Local
Memory

Local
Memory

Block(1,0)

Registers Registers

Shared Memory

Thread (0,0) Thread (1,0)

Local
Memory

Local
Memory

Global
Memory

Texture
Memory

Constant
Memory

Host

Figure 2.9: Overview of Visible Memory under CUDA [NVI09b].

21

allocation to deallocation. Memory accesses are not cached, reducing the performance

of the GPU for each access. A global memory request for a warp of threads is split

into two memory requests, one for the first 16 threads and one for the last 16 threads.

Global memory bandwidth is most efficiently used when memory accesses by a thread

half-warp are combined into a single memory transaction maximizing PCIe bandwidth

[NVI09b]. A single instruction can fetch 32, 64, or 128-bit words into registers from

global memory [NVI09b].

Local memory is located off the multiprocessor chip in DRAM and cannot be

accessed by the host. The memory retains data for the lifetime of the device thread,

since the local memory is per thread. The cost of accessing local memory is as

expensive as accessing global memory because local memory is not cached. This

means local memory should be used sparingly. Local memory is similar to global

memory except a single thread is the only one allowed to modify the data. This

ensures data integrity for the thread’s individual data.

Shared memory is on chip and assigned per thread block. The data lifetime of

shared memory is equal to the life of the block. It is divided into equally-sized memory

banks, with different banks being accessed simultaneously [NVI09b]. This allows the

maximum number of serviceable simultaneous memory requests to be the same as

the number of memory addresses falling in to unique memory banks. If memory

bank conflicts are avoided, then memory accesses can be as fast as registers. Caution

must be used since multiple threads can access the same data; all threads must be

synchronized after a write operation. The CUDA architecture includes a hardware

synchronization instruction that idles a thread when it is executed. After all threads

have executed the same synchronization instruction, all threads resume execution

at the next instruction. All threads must execute the synchronization instruction

before further execution is allowed. If all threads are not guaranteed to execute

the synchronization instruction, then the NVCC compiler driver will return an error

when compiling the source CUDA code. Synchronizing a thread after a memory write

operation guarantees every thread sees the same data in memory.

22

Registers are provided by thread block and are evenly divided between all

threads in a thread block. The life of the data in the register is equal to the life

of the thread assigned to the register. A register access takes zero clock cycles per

instruction, making it the fastest form of memory [NVI09b]. If there are not enough

registers for a thread, some data may be placed in local memory. This will result in

slow performance due to the high latency cost of accessing local memory. If there are

not enough registers and not enough local memory available for register data, then

the kernel execution will fail and an error code will be returned from the GPU.

Texture and constant memory are only readable by the device. Texture memory

holds an object for reading data, and the data is cached. The host code binds data

to a texture object and the kernel reads the data by fetching it from memory via

a function on the texture object. A texture is optimized for 2D spatial locality, so

maximum efficiency is reached when threads read texture addresses that are close

together [NVI09b]. Textures are better at hiding latency of addressing calculations

because they are designed for streaming fetches with a constant latency. In a texture,

each cache hit reduces demand for the DRAM bandwidth, while fetch latency remains

the same [NVI09b]. Constant memory is cached and is designed to hold data required

by every thread. It can only be written to by the host and remains constant once the

kernel starts to execute. When all threads in a warp read from the same address the

access is as fast as a register, but when threads read multiple locations each access will

be serialized. Pre-fetching of data will often eliminate cache misses on first constant

memory access, since when there is a cache hit there is only one cycle of latency even

though constant memory is in DRAM [NVI09b].

2.6.2 CUDA by NVIDIA. NVIDIA released the Compute Unified Device

Architecture (CUDA) in November of 2006 to provide developers with a general pur-

pose computing architecture that leverages the parallel compute engine in NVIDIA

GPGPUs. It facilitates the heterogeneous computing of CPU and GPU environments

by allowing the code executing on the host (CPU) to link, load, and start the code

23

intended for execution on the device (GPU). CUDA provides a software development

environment that allows developers to use C/C++ as the high-level programming lan-

guage for programming GPUs and predefined data structures and methods that build

upon the C/C++ programming languages to aid in parallel development through

extensions to the C language [NVI09b]. The environment also provides access to

CUDA device management, memory management, multi-threading, and execution

control APIs for integration with host applications. CUDA supports other high-

level languages such as FORTRAN, with support for more languages planned by

NVIDIA [NVI09b].

2.6.2.1 NVCC. NVCC is a compiler driver provided with the CUDA

Toolkit. NVCC invokes all of the necessary tools and compilers included with the

CUDA toolkit required to compile device code. Any kernels written in parallel thread

execution (PTX) (CUDA instruction set architecture) or a high-level language like C

must be compiled by NVCC into binary (cubin) code before being executed on the

device [NVI09b]. Source code of a program may consist of sections of code intended

for execution on the host and sections of code intended for execution on the device.

Figure 2.10 provides an overview of compiling within the NVCC paradigm. NVCC

is responsible for separating all of the host source code from device source code and

producing the GPU binary object used for linking into the host code [NVI09b]. Device

code is compiled into PTX or binary form by NVCC. The host code is then output

either as C code by NVCC or NVCC may directly invoke a C/C++ compiler to

produce object files for the host source code.

Applications can then load and execute the PTX code or cubin objects from

NVCC using the CUDA driver API, allowing applications to ignore any generated

host code produced when the PTX code or cubin objects were generated [NVI09b].

Applications may also link to any generated host code because the host code contains

the necessary CUDA C runtime function calls to load and launch all PTX code or

compiled kernels. Any PTX code loaded for execution by an application is compiled

24

C/C++ Program
with CUDA

Directives and/or API Calls

NVCC
Compiler

C/C++
Compiler and Linker

CPU Binary CUDA GPU Binary

Figure 2.10: CUDA Nvcc Paradigm [NVI09b].

at runtime into binary code by the device driver for the GPU. This just-in-time-

compilation does slow down the execution start, but allows applications to execute

on devices that did not exist when the application was compiled [NVI09b].

PTX defines a virtual machine and instruction set for parallel thread execu-

tion on a GPU. The PTX architecture is designed for efficiency on NVIDIA GPUs

[NVI09a]. At execution time, PTX instructions are translated and optimized for

25

the target GPU architecture. This provides a scalable programming model for pro-

gramming general purpose graphics processing units by allowing the binary code to

be optimized just before execution to take advantage of new hardware. Since cubin

binaries are compiled and contain hardware specific optimizations for the GPU hard-

ware on which the binary is intended to run, the binaries are not guaranteed to run

on different GPU hardware [NVI09b]. The cubin binary will start execution sooner

than PTX code, but will be less flexible with hardware upgrades.

Figure 2.10 also shows how host code and PTX code (or cubin objects) interact

during execution. The host thread is created and begins execution. The host thread

will load the code to be executed on the GPU. When the code is executed on the

GPU, multiple CUDA threads are created. After the CUDA threads finish, control

returns to the host thread. This process may be repeated multiple times depending

on the application.

2.6.2.2 CUDA Software Stack. CUDA includes three ways for an

application to execute code on a GPU through the CUDA software stack. Figure 2.11

shows the overview of the CUDA software stack and how an application would interact

with each part of the stack individually or indirectly through other parts of the stack.

The CUDA software stack includes: the CUDA Driver, the CUDA Runtime, and the

CUDA libraries. An application may directly use all, anyone, or a combination of

these to execute code on a GPU. Each part of the CUDA software stack is discussed

in detail in the following paragraphs.

The CUDA driver API is an imperative API based on handles [NVI09b]. Func-

tions implemented in the nvcuda dynamic library manipulate objects referenced by

opaque handles. Table 2.2 lists the objects supported by the driver API. The device

object contains numerous properties that track the state of the device and allow the

status of the GPU to be easily checked. The context object must be created and

attached to a device object before the host thread can execute any code. A context

object creates a CPU-like process on the GPU used to execute the kernel and transfer

26

C
P
U

Application

CUDA Libraries

CUDA Runtime

CUDA GPU Driver

GPU

Application

Figure 2.11: CUDA Software Stack [NVI09b].

data to and from device memory. A module object is similar to a dynamic library and

is loaded by the CUDA Driver prior to execution. Multiple module objects may exist

if multiple libraries are required for execution. A kernel is represented by a function

object, representing the entry point for the GPU code execution. The heap memory,

CUDA array, and texture reference objects are representations of memory structures.

The heap memory object is a pointer to the heap in device memory. A CUDA array

object is a container for array data on the GPU while the texture reference object

provides a way to access texture data.

Since the context object must be created before the CUDA Driver will pass any

instructions to the GPU, the runtime and libraries will create the context object the

first time a function is used from either the runtime or libraries. This means that

27

Table 2.2: CUDA Driver API Objects [NVI09b].

Object Description

Device CUDA enabled device
Context Roughly equivalent to a CPU process
Module Roughly equivalent to a dynamic library
Function Kernel
Heap Memory Pointer to device memory
CUDA array Opaque container for 1D or 2D data on device
Texture reference Describes how to interpret texture data

knowledge of the CUDA driver functionality is not required because the runtime and

libraries ensure the driver is properly initialized.

A CUDA context is created when a host thread first calls into the CUDA runtime

library; the host thread that made the first call is the only thread with access to

the CUDA context [NVI09b]. If a host system has multiple devices, any number of

threads may execute device code on the same device. A thread on the host is limited

to executing on one device at a time. If the host would like to execute on multiple

devices simultaneously then multiple host threads (equal to the number of devices)

would be required [NVI09b].

Two levels are provided by the CUDA Runtime API: the C API and the C++

API [NVI09c]. The C API provides an interface for C code and can be compiled

using any C compiler and does not require the use of NVCC. The C++ API provides

an interface for C++ code and can be compiled using any C++ compiler. The API

also contains CUDA wrappers dealing with special device functions and requires the

use of NVCC to correctly generate the necessary GPU instruction code. The CUDA

Runtime API uses the CUDA Driver API to execute code on a GPU. Because only a

single version of the CUDA driver can be installed on any one system and the Runtime

and libraries are dependent on the CUDA Driver, all applications and libraries on a

system are required to use the same version of the CUDA driver API [NVI09b].

28

CUDA provides a set of libraries for use in CUDA based applications. The

cublas and cufft libraries are provided in the CUDA toolkit [NVI09c] [NVI09b]. The

cublas library provides helper functions for error handling, memory allocation, and

data transfer. The cufft library provides functions for parallel computation of the Fast

Fourier Transform algorithm. The libraries are available to be integrated into C/C++

applications to assist with parallel code development for the GPU. The libraries are

installed as part of the CUDA Toolkit.

2.6.3 GeForce 9500 GT. The XFX 9500 GT graphics card is built around a

CUDA 1.1 enabled GeForce GPU by NVIDIA. It is made by XFX and is considered

a mainstream graphics card [XFX09]. The low-profile design of the graphics card

allows the card to be used in small compact desktops that may not be intended for

gaming or powerful workstations. As shown in Table 2.3, the card contains 1 GB

of DDR2 memory with a speed of 800 MHz and a 128-bit bus. The card supports

resolutions up to 2560x1600, SLI configurations, and has a clock rate of 1.35 GHz.

The PCI-Express 2.0 bus connects the graphics card to the host system. As shown in

Table 2.4, the 9500 GT has 64 kB of constant memory and 16 kB of shared memory.

It also supports concurrent memory copies and kernel execution, and places runtime

limits on kernels to prevent runaway code. The GPU has four multiprocessors, each

with eight cores, and allows multiple host threads to access the GPU simultaneously.

The CUDA driver version 3.0 is installed on the host system to operate the 9500 GT

graphics card. Version 2.30 of the CUDA runtime with Compute Capability 1.1 is

also installed. The Compute Capability defines the hardware features each device is

to implement and make available.

The GPU has a compute mode property set by the NVIDIA Control Panel,

currently available only for Linux, that controls if the card is available for execution

of a kernel. The default compute mode defines that multiple host threads may use

the device. The exclusive compute mode limits device usage to only one host thread

at a time. Prohibited compute mode disallows any thread to use the device. The

29

Table 2.3: XFX 9500 GT Hardware Specifications [XFX09].

Hardware Item Value

Chipset GeForce 9500 GT
Engine Clock 550 MHz
Bus Type PCI-E 2.0
Number of Stream Processors 32
Memory Bus 128
Memory Type DDR2
Memory Size 1GB
Memory Speed 800 MHz
Shader Clock 1375 MHz
Features CUDA, DirectX 10, PhysX

Table 2.4: CUDA Memory Characteristics.

Property Value

CUDA Driver Version 3.0
CUDA Runtime Version 2.30
CUDA Compute Capability 1.1
Total amount of global memory 1073454544 bytes
Number of multiprocessors 4
Number of cores 32
Total amount of constant memory 65536 bytes
Total amount of shared memory per block 16384 bytes
Total number of registers available per block 8192
Concurrent copy and execution Yes
Run time limit on kernels Yes
Compute Mode Multiple host threads

compute mode can be checked by retrieving the computer mode property from the

device. If an application is requesting a specific device, then it is necessary to verify

the device’s compute mode to ensure the device is available [NVI09b].

2.7 ClamAV Engine

ClamAV is an open source anti-virus toolkit. The toolkit consists of a shared

library and virus database. The malware database includes support for standard,

30

compressed, obfuscated, or packed PE files [Cla09a]. It serves as the base for the

ClamWin Anti-virus program for Microsoft Windows [Cla09c].

The ClamAV Virus Database is a [.cvd] file containing a 512 byte header and a

compressed section of signature databases. The header contains various information

about the CVD including MD5 checksum and a digital signature. The header has the

following format [Cla09b]:

ClamAV-VDB:build time:version:number of signatures: function-

ality level required:MD5 checksum:digital signature: builder name:

build time(sec)

The compressed section of signature databases contains multiple databases. The

header must be removed before the databases can be decompressed. Each database

contains MD5 hashes or hex strings as the signature and serves a different purpose.

Table 2.5 gives the databases with purpose and entry syntax. The [.hdb] and [.mdb]

databases contain MD5 signatures for PE files. [.ndb] and [.db] databases contain hex

signatures for PE files, while [.zmd] and [.rmd] databases contain CRC32 signatures

for the meta data inside ZIP and RAR files. The [.fp] database contains a list of

signatures that are white listed in all of the other databases.

The shared library is designed for a serial CPU and is not designed for use on

a GPU. Therefore it is necessary to develop a parallel library. The Clam AV library

will serve as a good example, providing code that can be ported to work on a GPU.

2.8 Related Work

The parallel nature of the GPU makes it a good choice for linear algebra

and cryptography applications. Recently the GPU has been used in molecular bi-

ology, physics, chemistry, and weather prediction to increase the performance of al-

gorithms [NVI10] [MiV08]. GPUs have also been successfully applied to image and

signal processing, database management, financial services, and audio encoding and

31

Table 2.5: ClamAV Databases with Purpose and Signature Format [Cla09b].

Database Purpose Format

.hdb MD5 signatures for PE files MD5:number:filename
.mdb MD5 signatures for PE file

sections
PESectionSize:MD5:MalwareName

.ndb Hex signatures with wild-
card characters for PE files

MalwareName:TargetType:Offset:
HexSignature[:MinEngine Funcationl-
ityLevel:[max]]

.db Hex signatures for PE files MalwareName=HexSignature
.zmd CRC32 signatures based on

metadata inside ZIP archive
files

virname:encrypted:filename:normal
size:csize:crc32:cmethod:fileno:max
depth

.rmd CRC32 signatures based
on metadata inside RAR
archive files

virname:encrypted:filename:normal
size:csize:crc32:cmethod:fileno:max
depth

.fp List of signatures in the
other databases that are
white listed.

db name:line number:signature name

decoding [NVI10] [HoW04]. These are just a few of the uses of the GPU; there are

many more applications.

Hu et al., proposed a high throughput GPU implementation of the MD5 algo-

rithm [HMH09]. The proposed method is based on the standard MD5 algorithm, but

breaks the data into smaller blocks. Each block is hashed using MD5 individually,

then the resulting hashes are then hashed using MD5 to produce a master hash result.

The master hash can then be used as a fingerprint for the data. This implementation

has been shown to increase the throughput of MD5 algorithm on the GPU 20 times

over the standard implementation of MD5 [HMH09]. While the throughput of the

MD5 algorithm has increased, the results (hashes) will be different than those pro-

duced by the standard MD5 algorithm. This means this method is not compatible

with current malware databases based on the MD5 algorithm. This method could be

used in future malware databases designed to leverage the parallel power of the GPU.

Collange et al. successfully applied the parallel power of the GPU to forensics

data carving [CDD09]. They use a GPU to detect image file byte patterns in sample

32

individual disk clusters. The patterns are fingerprinted by hashing (using the CRC64

algorithm) and the hashes are then used for matching. The hashes of the patterns are

compared against hashes of patterns from known images. The GPU implementation

with all data in graphics memory was shown to outperform a software implementation

on a CPU and improve the search process performance 13-fold by providing higher

data throughput [CDD09]. This shows the GPU can increase the performance of

hashing and hash searches (or hash matching).

Nigel Jacob and Carla Brodley proposed PixelSnort, a GPU port of the popular

open source intrusion detection system (IDS) Snort [JaB06]. The authors noticed

that the performance of Snort significantly decreases when the load on the IDS-

host increases. PixelSnort is designed to off-load some of the IDS computation to

a GPU [JaB06]. The GPU uses a string-matching algorithm to identify network

packets; the authors use a simple algorithm and acknowledge it may not be optimal

for a GPU. PixelSnort outperforms Snort by up to 40% under heavy loads [JaB06].

While the authors did not have a significant speed up under normal load conditions;

PixelSnort demonstrates the GPU can be used for off-loading computational intensive

tasks while providing performance increases.

Huang et al. also used a GPU to increase the performance of an IDS [HHL08].

The authors proposed an algorithm similar to the Wu-Manber algorithm designed

to take advantage of the GPU’s parallel nature. Their proposed approach increases

performance by two fold over the modified Wu-Manber algorithm used in Snort. The

proposed approach can be applied to signature-based anti-virus systems to detect

malware.

Kouzinopoulos and Margaritis explored using a GPU for string matching [KoM09].

This process looks for a small subset of string data within a larger set of data. By

using the parallel architecture of the GPU, the authors were able to obtain a twenty-

four fold increase over the serial implementation on a CPU. String matching is often

used in malware detection. Some malware databases, like the one used in Clam AV,

33

contain strings that appear within malware, these strings are then compared to the

file contents allowing for additional detailed detection. This shows a GPU increases

the performance in string matching algorithms and supports the idea that a GPU

could be used in commercial anti-virus products.

Mario Juric [Jur08] used a GPU and CPU to calculate hashes of strings and

then compare each hash to a given hash database. The research determined that the

optimal number of threads per block on a GPU for a GeForce 8800 Ultra is 63. It also

showed that the GPU was 36 times faster than the CPU when executing the same

code. The research was limited to strings of 56 characters, so all data would fit in

shared memory. This research shows a GPU can increase the performance of MD5

hashing and database searching of strings.

Bhattarakosol and Suttichaya [BhS07] proposed using multiple threads and file

size grouping to increase the speed of malware detection. This method makes use

of the multiple threads on a standard CPU. The files are grouped according to size,

with a thread assigned to each group. Malware detection speeds increased when

compared to using a single threaded process. This research displays the advantage to

using multiple threads during malware detection to maximize efficiency on the CPU,

giving promise to the potential speed increase using a GPU with multiple lightweight

threads. It also shows that grouping files by size for each thread block may provide a

performance increase by reducing the time finished threads in the thread block idle,

waiting on other threads to finish.

GPUs are used in two volunteer computing projects to achieve performance

increases. Folding@Home is a community volunteer project that looks at protein

folding [Sta10]. The project supports heterogeneous hardware (CPU and GPU). Fold-

ing@Home distributes a problem over all CPUs and GPUs in the community. The

project has shown that GPUs give a 10 fold performance increase over a CPU [Sta10].

BONIC is another community volunteer computing project. BONIC solves vari-

ous scientific applications instead of just concentrating on protein folding like Fold-

34

ing@Home [Ber10]. It uses GPUs, but the performance increases have not been quan-

tified. This shows the diversity of the GPU and how it has been applied to solve

problems.

2.9 Summary

This chapter presents background information on static malware detection. The

Portable Executable File Format used in Microsoft Windows operating systems, the

use of MD5 for fingerprinting files, and the Pentium 4 CPU are also discussed. PCIe,

the I/O bus connecting the GPU to the host system, is explored and its effects on

data transfers discussed. The advancements of GPUs for general purpose computing

are studied in detail, and the Clam AV database is presented. Finally, related work

and research are discussed. Based on the information in this chapter, a GPU appears

to be a good choice for offloading file fingerprinting and MD5 hash searches.

35

III. Methodology

This chapter outlines the methodology used to evaluate the performance of the

GPU ID system using time to inspect executables and the number of correct

identification as performance metrics. Section 3.1 discusses the goals and hypotheses,

and Section 3.2 discusses the approach. The system boundaries are discussed in Sec-

tion 3.3; the system services are discussed in Section 3.4. A description of the workload

is presented in Section 3.5; performance metrics and system parameters are presented

in Section 3.6 and Section 3.7, respectively. The factors are discussed in Section 3.8,

followed by the evaluation technique in Section 3.9. Finally, the experimental design

is discussed in Section 3.10.

3.1 Goals and Hypothesis

The primary goal of this research is to use a GPU to correctly discriminate be-

tween malicious and benign files using predetermined signatures. Current techniques

of detecting malware uses a serial scan of files, which can lead to increased scanning

time as the number and size of the files increase. It is expected that the GPU will be

able to rapidly hash the binary code of a file and compare the hash to a database, with

100% detection rate of known malware, because of its ability to operate like a CPU.

It is also expected that since the GPU is highly parallelized it will simultaneously

inspect multiple files at the same time.

The second goal of this research is to measure the performance of using a GPU

for detection of malware. This determines whether the approach is feasible for prod-

ucts such as commercial anti-virus products. It is expected that GPU will increase

the speed of detection and will result in faster processing of the executables because

there is higher memory bandwidth available to a GPU, over a CPU.

The third goal of this research is to find the optimal number of threads per

block for calculating MD5 hashes with the GPU ID system and for searching the

signature database for matches. The GPU ID system uses two CUDA kernels, one

for calculating the MD5 hashes of the files, and one for searching the MD5 database

36

Table 3.1: Graphic Processing Unit IDentifier Experiment Summary.

Experiment Metric Goal

1 Time to Calculate
MD5 Hash of All Files

Find optimal number of threads per
block for MD5 hashing.

2 Time to Search Signa-
ture Database

Find optimal number of threads per
block for searching the database

3 Probability of Detec-
tion

Detect malicious and benign files using
predefined signatures

3 Detection Time Measure performance of the GPU dur-
ing detection

for a signature match. Since two kernels are used, each kernel may have a different

number of threads per block. It is expected that the number of threads per block

for calculating MD5 hashes will be 63; this is based on previous research by Mario

Juric [Jur08]. The number of threads per block for searching the signature database

is expected to be 512 (the maximum number of threads per block allowed). This is

because the cost of loading the computed hashes to shared device memory first is best

distributed across the maximum number of threads per block allowed.

For Goal #1, detecting Malicious and Benign Files Using Predetermined Signa-

tures, the hypothesis is a GPU would detect 100% of the known malware with no false

positives (disregarding MD5 collisions). For Goal #2, measuring the Performance of a

GPU, the hypothesis is a GPU will decrease detection time, while processing executa-

bles faster than a CPU for a given number of threads per block. For Goal #3, finding

the Optimal Number of Threads per Block, the hypothesis is the optimal number of

threads per block for calculating MD5 hashes is 63, while the optimal number for

searching the database for a signature match is 512.

Three experiments are conducted to determine if the GPU ID system meets the

stated goals and hypotheses. Table 3.1 summarizes the metrics and goals used in the

experiments to evaluate the GPU ID system.

37

3.2 Approach

The GPU ID system was developed on an NVIDIA GeForce 9500 GT graphics

card by XFX. The reason the GPU ID system is developed on the GeForce 9500 GT

is because the GPU supports the CUDA architecture and is considered a mainstream

GPU. Since it is a mainstream GPU it is available in desktops intended for everyday

use, and not those only intended for gaming or specific applications. The GPU is used

without modifications to the factory settings and with the driver supplied by NVIDIA

(driver version 3.0). The software used with the GPU is based on the MD5 algorithm

(as described in RFC 1321) and Clam AV (version 0.95.3) open source project, while

the software implementation for the CPU is based on the software for the GPU with

minor changes (discussed later in Section 3.2.1). The signature databases used in the

experiments are modified versions (discussed later in Section 3.2.3) of those included

in Clam AV.

3.2.1 Software. The GPU ID software consists of initialization host code,

two kernels implemented in CUDA, and completion host code, as shown in Figure 3.1.

The initialization host code, running on the host, initializes the device (GPU) using

the CUDA Runtime libraries and then loads files and databases from disk on the host

(CPU) to device memory. The device code is divided into two kernels. The first kernel

calculates the MD5 hashes for all files loaded into memory and saves the hashes to

device memory. The second kernel loads the calculated hashes to shared memory on

the device and then allows each thread to retrieve one signature from the database

and compare it with each of the generated MD5 hashes searching for a match. If a

match is found, a corresponding flag is set in device memory. The hashes are first

loaded to shared memory to reduce the memory latency when accessing the values.

The MD5 hash from the database is loaded into four 32-bit registers for each thread

so the signature is loaded only once from the database in memory. The completion

host code runs on the host and copies the match flags from device memory to the

host for processing (i.e., print results to screen). Pilot tests reveal that a linear search

38

CPU

D
R
A
M

Host (CPU)

GPU

Kernel 1

Kernel 2

D
R
A
M

Device (GPU)

1

2

3

4

1. Initialization Host Code

2. Kernel 1: Calculate hashes for all files in device memory

3. Kernel 2: Search database for matching signature

4. Completion Host Code

Figure 3.1: Overview of the GPU ID System

is faster on the GPU than sorting and using a binary search. This is most likely due

to the large amounts of costly global memory accesses required to sort the database

and then perform the binary search.

As shown in Figure 3.2, the software implementation used on the CPU is similar

to GPU ID, except all code runs on the host and uses built-in Windows system

libraries. First the files and signature databases are loaded into memory. Then the

MD5 hashes are calculated for all files in memory and the hashes stored in memory.

Next the signatures are sorted using the built in Quick Sort function in C++. Each

generated MD5 hash is compared to the hashes in the signature database using a

binary search. If there is a match it is recorded in memory for later processing. Pilot

tests reveal that a sorted database with a binary search performs better on the CPU

than a linear search.

3.2.2 Malicious and Benign Files. A total of 1,024 executable files were

collected from a Microsoft Windows XP system; all of which were less than 192 kB

in size. The file size was limited to files less than 192 kB because the files collected

from the active Windows XP system only provided enough files (1,024) for the ex-

39

CPU

D
R
A
M

Host (CPU)

12

3 4

1. Load files and database to memory

2. Calculate MD5 hashes for files

3. Quick sort the signature database

4. Search the database using a binary search

5. Record matches for processing

5

Figure 3.2: Overview of the GPU ID System Implementation on a CPU.

periments at this level. These files were then divided into four groups: two groups

of executables less than 96 kB (small executables) and two groups 96 kB or greater

(large executables). The files were split at 96 kB because this division gave enough

files for each group (256 files). One group from each of the small executables and

large executables are further classified as malicious or benign. This classification was

made randomly.

3.2.3 Signature Databases. The signature database used in the experiments

is based on the Clam AV malware databases of full hashed executables with MD5

signatures. The databases in Clam AV with MD5 signatures are combined into one

database, and then the hashes of the 512 files representing malicious files are randomly

inserted in the database. The database has a total of 730,336 MD5 signatures. The

database is checked for the MD5 signatures of the 256 files representing benign files

to verify they are not listed. All MD5 signatures for the building and validation of

the database were computed by HashCalc version 2.02 [Sla10].

40

3.2.4 GPU ID Algorithm. The GPU ID algorithm is comprised of the

following steps:

1. Calculate the MD5 hashes for the 256 files loaded into memory.

2. For each thread block: load the 256 hashes to shared memory.

3. Each thread retrieves a different signature from the database in memory.

4. Compare each file hash to the signature from the database.

5. If there is a match, record file as malicious.

6. If there is not a match, assume file is benign and do not record.

Step 1 is done in a separate kernel from Steps 2 - 6. This is done to allow

for more efficient use of the GPU hardware by using different configurations for each

kernel.

3.3 System Boundaries

Figure 3.3 shows the system under test, the GPU ID System. It includes a Dell

Optiplex GX620 with a Intel Pentium 4 processor with Hyper-Threading enabled and

3 GB of RAM. The PC has minimal I/O devices (monitor, mouse, keyboard, and a

disk drive), Microsoft Windows XP operating system version 2002 SP3, the CUDA

Toolkit and SDK 2.3 from NVIDIA, a mainstream top-of-the-line NVIDIA GeForce

9500 GT graphics card, and GPU ID program to load the signature database and

scan the executables.

The component under test is the GPU ID program. Figure 3.4 shows the com-

ponent under test.

The workload parameters include benign and malicious executables. The system

parameters are the executable size, executable type (benign or malicious), and the

processing hardware (GPU or CPU). The metrics include the execution time and the

identification result which is used to calculate the probability of detection for known

malware.

41

GPU ID System

PC

with

minimal I/O

Microsoft

Windows XP

SP3 v2002

NVIDIA

GeForce

9500 GT

Graphics Card

1GB RAM

GPU ID

Program

(CUT)

Intel Pentium 4

3.20 GHz

3GB RAM

NVIDIA

ForceWare

Graphics Driver

v190.38

Benign Executables

Malicious Executables

Identification Result

Execution Time

Executable Size Executable Type Processing Hardware

CUDA

SDK 2.3

Signature

Database

Figure 3.3: The GPU ID System.

Executable

Execution Time

Data Streams

Identification

GPU ID

Program

(CUT)

GPU/CPU

Hardware

Identification

Signature Database

Figure 3.4: Component Under Test (CUT).

Experiments 1 and 2 use the system under test but varies the number of threads

per block on the GPU. The component under test is the same except execution time

is measured for each individual kernel execution. The identification result returned

from the GPU is used only to verify the system is functioning correctly.

To determine the performance using a GPU for Experiment 3, the same system

under test is used. The GPU ID system’s performance is compared to a software im-

plementation on a CPU. Both implementations use the same executable and signature

database, with the difference being intended execution hardware (GPU or CPU).

42

3.4 System Services

The service provided by the GPU ID system is to identify an executable as

benign or malicious. The GPU ID system is designed to assist in the detection of

malware or files of interest when there are a large amount of files for processing.

The system is successful when the following happens for all files loaded onto the

GPU:

• The file’s hash is correctly calculated (i.e., the results are correct).

• If the file’s hash is in the database, the file is identified as malicious.

• If the file’s hash is not in the database, the file is identified as benign.

• The GPU device does not return an error code at any time.

A failure occurs when any of the following happen:

• The file’s hash is incorrectly calculated (i.e., the results are not correct).

• The file’s hash is in the database, but the file is identified as benign.

• The file’s hash is not in the database, but the file is identified as malicious.

• The GPU device returns an error code at any time.

These failures are possible if any of the inspection algorithms are flawed, the

time limit for kernel execution on a GPU is reached, or memory on the GPU is

cannibalized for display purposes.

It is possible that two MD5 hashes will collide, resulting in a benign file being

identified as malicious (false positive). Collisions are not considered in this system,

because the chance of collision is 1 in 2128. If collisions were a concern, the system

could use a different form of signatures, such as string matching, or a different hashing

algorithm.

43

3.5 Workload

The workload consists of executables which are labeled as either benign or ma-

licious. Each executable contains binary code for different functionality (i.e., no two

executables are the same). The workload is varied by changing: the size of the exe-

cutable, executable type, and the processing hardware.

The workload consists of 1,024 executable files from a Microsoft Windows XP

system. Half of the executable files are designated as malicious by randomly inserting

the MD5 hash signature into the malware database. The other half of the files are

considered benign, and it is verified that the MD5 hash for these files are not in the

malware signature database.

The size of the executable is the most important factor of the workload since it

directly affects the time needed to inspect the binary code. The size of the executable

is measured as the size of the file, not necessarily the size set aside by the Windows

XP operating system to store the file on disk. Executables of different sizes test the

flexibility of the system.

3.6 Performance Metrics

Two performance metrics are used to evaluate the GPU ID system; they are the

identification result and the execution time.

3.6.1 Identification Result. The identification result demonstrates that each

system is producing correct results and serves as a quantity used to validate if the

system is working correctly. A correct identification is when malware is identified as

malware and benign files are not identified. A malicious file will have a match in

the malware database. The identification result is used in all three experiments to

validate each experiment is correctly identifying the files.

3.6.2 Execution Time. The execution time, or the time required to process

the executables, is measured differently for each experiment. For Experiment 1, exe-

44

cution time starts immediately after the group of executables are sent to the GPU and

stops when the MD5 file hashes are completed and the GPU returns a success code.

Execution for Experiment 2 starts from the time the search of the malware database

starts (kernel execution starts) and stops when results are returned from the GPU,

or when a failure notice is returned. For Experiment 3, this time is measured from

the time immediately after the group of executables are sent to the GPU/CPU until

the results are returned from the GPU/CPU or when a failure notice is returned.

3.7 System Parameters

The three GPU ID system parameters are the executable size, executable type,

and the processing hardware. In all of the experiments, the executable size is varied

by using two different sizes of executables. The executable type is always malicious

or benign, with benign representing the worst case scenario for the system because

all MD5 hashes in the database must be searched. The processing hardware is either

the GPU for the GPU ID system or the CPU for the software implementation.

3.8 Factors

In all experiments the executable size and executable type are varied. The size

of the executable has two levels: small and large. Small is defined as 96 kB or less;

large is defined as greater than 96 kB, but less than 192 kB. These two sizes are

chosen because malware is generally small and can travel fast over a network to avoid

detection. This factor is varied because the time required to identify an executable

as malicious should increase with the size of the executable.

Executable type is defined by the executable having its MD5 signature listed in

the malware database, or the file being benign (not listed in the malware database).

This factor is varied because extra time will be needed to set the malicious flag for

the file in memory. Depending on the executable type, this will result in different

memory access patterns.

45

Table 3.2: Factors and Associated Levels for Experiments 1 and 2.

Factors Levels

Executable Size
Small - 96 kB or less

Large - greater than 96 kB, less than 192 kB

Executable Type
Benign

Malicious

Number of Threads per Block
1-256 for Experiment 1

256-512 for Experiment 2

Experiments 1 and 2 are only run on the GPU, but the number of threads

per block are varied. For Experiment 1, calculating the MD5 hashes of files, 1-256

threads per block are used. Since there are only 256 files in each group and the MD5

algorithm cannot be split into smaller pieces, there is no reason to try more than 256

threads per block. For Experiment 2, searching the malware database for MD5 hash

matches, 256 - 512 threads per block are used. Since there are 256 file hashes that

must be loaded into shared memory on the GPU, it is not cost effective to use fewer

threads. The maximum number of threads per block on this GPU is 512; a number

greater than 512 will cause the GPU to return an ‘unavailable resource’ error instead

of results. Table 3.2 summarizes the factors for Experiments 1 and 2.

In Experiment 3, the processing hardware is varied in addition to the executable

size and executable type. Processing hardware is the type of processing unit perform-

ing the calculations on the file stream. This factor is varied because the time required

to scan files should decrease with the use of a GPU due to its highly parallel ar-

chitecture and the CPU’s serial architecture. Table 3.3 summaries the factors for

Experiment 3.

3.9 Evaluation Technique

Direct measurement is selected as the evaluation technique for the experiments

because all resources are readily available. In addition, the identification (or classi-

46

Table 3.3: Factors and Associated Levels for Experiment 3.

Factors Levels

Executable Size
Small - 96 kB or less

Large - greater than 96 kB, less than 192 kB

Executable Type
Benign

Malicious

Processing Hardware
GPU

CPU

fication as benign or malicious) can be stored and the time needed to process the

executable easily measured. Simulation and analytical analysis of graphics cards is

not practical since the cards are proprietary and not all implementation details are

available.

The following hardware is used in the experimental configuration:

• The PC is a mainstream Dell Optiplex GX620. The processor is an Intel Pen-

tium 4 CPU running at 3.20 GHz with Hyper-Threading enabled. It contains 3

GB of DDR2 memory in a dual channel configuration. Table 3.4 shows detailed

specifications of the PC.

• The GPU is a mainstream graphics card - NVIDIA GeForce 9500 GT graphics

card (XFX). The GPU has 32 stream processors and features one GB of DDR2

memory. Table 3.5 shows detailed information on the XFX 9500 GT graphics

card.

To determine the performance of the GPU, its execution time is monitored. The

CUDA API provides a system independent way to track execution time. Using the

API, a timer with 32-bit resolution can be created, started, and stopped. The timer

measures elapsed time in milliseconds. This method may be used for execution timing

on a GPU or CPU. The first experiment measures only the execution time required

47

Table 3.4: PC Specification Overview.

Item Values

PC Manufacturer Dell
Processor Intel Pentium 4 640

Processor Package Socket 775 LGA
Processor Speed 3.20 GHz
Front Side Bus 800 MHz
Memory Type DDR2
Memory Size 3 GB

Memory Configuration Dual
Hyper-Threading Enabled

Table 3.5: GeForce 9500 GT Specification Overview.

Item Values

Chipset GFGF 9500 GT
Engine Clock 550 MHz

Bus Type PCI-E 2.0
Stream Processors 32

Memory Bus 128-bit
Memory Type DDR2
Memory Size 1 GB

Memory Speed 800 MHz
Shader Clock 1375 MHz

Features CUDA, DX 10DX, PhysX

to calculate all file hashes. The second experiment measures only the execution time

required to search the malware database for possible matches.

The execution time is monitored the same way in Experiments 1 and 2, except

the experiment measures the time required to calculate all file hashes and search the

malware database for possible matches respectively. This time is compared to the

time used for the same group of executables to be scanned on a CPU. The GPU code

to detect malware is validated by comparing the number of malicious files found by

the GPU to the number of malicious files found by the CPU. These numbers should

be the same because the same malware database is used.

48

The following assumptions are valid for this experiment:

• The GPU is not handling graphical display. All monitors were unplugged from

the PC and the Scheduled Task feature of Windows XP was used to load and

start the program.

• The CPU is not taxed with running software, only the OS is functioning.

• All files and the malware database for each experiment are loaded into memory

before the experiment starts.

3.10 Experimental Design

3.10.1 Experiment 1. A full factorial experimental design will be used to

fully measure the effect of varying the number of threads per block on execution time.

One run is executed for each level of executable size (2), executable type (2), and

number of threads per block (512). Each experiment is run 50 times for a total of

102,400 runs. For execution time, a one-variable t-test is used to determine the mean

execution time of the first kernel along with the standard deviation, and the standard

error of the mean. A 95% confidence interval is used for the mean. A 100% probability

of correctly identifying the file as malicious or benign is required. This is necessary to

ensure the system is functioning properly and none of the executables are mislabeled.

3.10.2 Experiment 2. A full factorial experimental design will be used to

fully measure the effect of varying the number of threads per block on execution

time. One run is executed for each level of executable size (2), executable type (2),

and number of threads per block (512). Each experiment is run 50 times for a total

of 102,400 runs. For execution time, a one-variable t-test is used to determine the

mean execution time of the second kernel along with the standard deviation, and the

standard error of the mean. A 95% confidence interval is used for the mean. A 100%

probability of correctly identifying the file as malicious or benign is required. This is

necessary to ensure the system is functioning properly and none of the executables

are mislabeled.

49

3.10.3 Experiment 3. A full factorial experimental design will be used to

fully measure the effect of the size of the executable and the effect of the type of

executable against the effect of the type of processing hardware. One run is executed

for each level of executable size (2), executable type (2), and number of threads

per block (512). Each experiment is run 100 times for a total of 800 runs. For

execution time, a one-variable t-test is used to determine the mean execution time

of the application along with the standard deviation, and the standard error of the

mean. A 95% confidence interval is used for the mean. A 100% probability of correctly

identifying the file as malicious or benign is required. This is necessary to ensure the

system is functioning properly and none of the executables are mislabeled.

3.11 Methodology Summary

A GPU and CPU are used to classify executables as malicious or benign. The

size of the executable, executable type (malicious or benign), and number of threads

per block are varied in a full factorial experimental design in the first and second

experiments. The experiments record if the file is benign or malicious and measure

the time required to calculate MD5 hashes for the files and the time to search the

malware database for a match. This information is used to analyze the performance

of GPU hardware in relation to the number of threads per block, which allows the

GPU ID system to be optimized in Experiment 3.

The size of the executable, executable type (benign or malicious), and processing

hardware are varied in a full factorial experimental design in Experiment 3. The

experiment records if the file is benign or malicious and measure the time required to

identify the executable. This information can be used to analyze the performance of

GPU hardware against CPU hardware.

50

IV. Results and Analysis

This chapter details and analyzes the experimental results of the three experi-

ments. First, the results for Experiment 1 are discussed in Section 4.1. Section

4.2 details the results and analysis for Experiment 2. Section 4.3 presents the results

and analysis from Experiment 3. Finally, an overall analysis of all results is given in

Section 4.4, and a chapter summary is presented in Section 4.5.

4.1 Results and Analysis of Experiment 1

In Experiment 1 a GPU calculated teh MD5 hashes of 256 files. The number

of threads per block were varied for calculating the MD5 file hashes. Looking at the

plotted results of the mean MD5 hash times on a GPU in Figure 4.1 the following

qualitative observations are made:

• Using less than 44 threads per block decreases performance of calculating MD5

hashes on a GPU by increasing the execution time 4% to 105%.

• There is no clear best number of threads per block for calculating MD5 hashes.

The average performance for small benign files is between 0.0164550 and 0.0181401

milliseconds, small malicious files is between 0.0164988 and 0.0181774, large be-

nign files is between 0.0166952 and 0.0182450, and large malicious files is be-

tween 0.0164176 and 0.0198692 for any thread per block value between 44 and

256.

• For the large malicious (Figure 4.1(d)) hash test, the means have greater vari-

ance (0.00345156 ms) from one mean to the next when compared to the large

benign (Figure 4.1(c)) hash tests (0.00154980 ms).

• For the small benign (Figure 4.1(a) hash test, the means have greater vari-

ance (0.00168508 ms) from one mean to the next when compared to the small

malicious (Figure 4.1(b)) hash tests (0.00167865 ms).

51

• Since there are only 256 files to calculate the MD5 hash for, the number of

threads per block has a maximum of 256 threads per block - one thread for each

file.

• For each set of files, there is a large dip between 37 to 43 threads per block.

Using less than 44 threads per block yields a decrease in the performance of

calculating MD5 hashes on a GPU by 4% to 105%. Since threads are managed in

groups of 32, the memory latency is better hidden with 44 or more threads. With

44 threads per block, this gives the GPU multiprocessor 2 warps to switch between

during memory requests helping to hide memory latency. Also using greater than 256

threads per block would not yield any performance improvements since the threads

above 256 would idle or return without executing any code.

The mean of the small benign files have a greater variance(0.00168508 ms) when

compared to the small malicious files (0.00167865 ms) and so do the large malicious

files (0.00345156 ms) when compared to the large benign files (0.00154980 ms). It is

expected that both the large and small malicious files would have a greater variance

in the means than the small and malicious benign files due to the extra memory write

required to set the malicious flag in global memory, but this does not happen in this

experiment. The reason for this difference in variance is unknown.

Based on the mean times in Figure 4.1 and similar research [Jur08], 63 threads

per block are used in Experiment 3 for calculating the MD5 hash. The number of

optimal threads per block is not clearly identifiable, but it is clear more than 43

threads per block should be used.

For each set of files there is a large dip between 37 and 43 threads per block. This

dip is caused by the GPUs advanced thread scheduling hiding memory latency. As

the number of threads increase from 37 to 43, the GPU has better ability to schedule

threads performing computation, while other threads are waiting for memory requests

to be fulfilled. This allows the GPU to keep the hardware busy with computations

instead of idling, waiting on memory requests.

52

2251931611299765331

0.035

0.030

0.025

0.020

0.015

Number of Threads per Block

M
D
5
 H
a
s
h
 T
im
e
 (
m
s
)

Small Benign Hash Test Mean

(a) Mean MD5 hash times for 1 - 256 threads per
block for small benign files.

2251931611299765331

0.035

0.030

0.025

0.020

0.015

Number of Threads per Block

M
D
5
 H
a
s
h
 T
im
e
 (
m
s
)

Small Malicious Hash Test Mean

(b) Mean MD5 hash times for 1 - 256 threads per
block for small malicious files.

2251931611299765331

0.035

0.030

0.025

0.020

0.015

Number of Threads per Block

M
D
5
 H
a
s
h
 T
im
e
 (
m
s
)

Large Beign Hash Test Mean

(c) Mean MD5 hash times for 1 - 256 threads per
block for large benign files.

2251931611299765331

0.035

0.030

0.025

0.020

0.015

Number of Threads per Block

M
D
5
 H
a
s
h
 T
im
e
 (
m
s
)

Large Malicious Hash Test Mean

(d) Mean MD5 hash times for 1 - 256 threads per
block for large malicious files.

Figure 4.1: Mean MD5 hash times for 1 - 256 threads per block on a GPU.

With 44 threads per block, this gives the GPU multiprocessor 2 warps to switch

between during memory requests helping to hide memory latency.

4.2 Results and Analysis of Experiment 2

In Experiment 2 a GPU compared 256 file hashes to a database of 730,336

using a linear search. The number of threads per block were varied when searching

the database for MD5 hash matches. Looking at the plotted results of the mean MD5

database search times on a GPU in Figure 4.2 the following observations are made:

• Using fewer than 256 threads per block decreases the performance of the GPU,

by increasing the time required to process the files by 600 to 800 milliseconds.

53

• An overall exponential decrease is seen as the number of warps (groups of 32

threads) increases.

• A grouping of 16 threads in a line and two lines to a group is seen on all four

graphs.

• Figure 4.2(a)(b)(c)(d) shows the best number of threads per block are the max-

imum number of threads allowed in a block - 512.

Using fewer than 256 threads per block causes some threads to make multiple

memory reads to move data from global to shared memory. This decreases the per-

formance of the GPU. A pilot test revealed that fewer than 256 threads per block

would increase the time of processing files on a GPU by 600 to 800 milliseconds.

This increase is from the conditional branching required for 256 threads per block to

completely load shared memory and from the multiple memory accesses each thread

must make.

As the number of threads increases, an overall exponential decreasing pattern is

seen. This is due to the ability of each additional thread to take advantage of the data

loaded into shared memory by the first 256 threads in a block. In this experiment 256

threads per block represents the worst case for taking advantage of shared memory

and 512 threads per block represents the best case for taking advantage of shared

memory. It is possible that if the GPU hardware allowed more threads per block than

512, search performance could be increased.

A grouping of 16 threads in a line and two lines to a group is seen on all four

graphs. This is from the GPU management of threads in a warp. Memory requests

are made for a warp and are combined into two memory requests, one for the first

16 threads and one for the second 16 threads of the warp. Combining the memory

accesses for 32 threads into two memory transactions allows for more efficient use of

the memory bandwidth.

54

512480448416384352320288256

68

67

66

65

64

63

62

61

Number of Threads per Block

D
a
ta
b
a
s
e
 S
e
a
rc
h
 T
im
e
 (
m
s
)

Small Benign Search Test Mean Values

(a) Mean database search times and confidence
intervals for 256 - 512 threads per block for small
benign files.

512480448416384352320288256

68

67

66

65

64

63

62

61

Number of Threads per Block

D
a
ta
b
a
s
e
 S
e
a
rc
h
 T
im
e
 (
m
s
)

Small Malicious Search Test Mean Values

(b) Mean database search times and confidence
intervals for 256 - 512 threads per block for small
malicious files.

512480448416384352320288256

99

98

97

96

95

94

93

Number of Threads per Block

D
a
ta
b
a
s
e
 S
e
a
rc
h
 T
im
e
 (
m
s
)

Large Benign Search Test Mean Values

(c) Mean database search times and confidence
intervals for 256 - 512 threads per block for large
benign files.

512480448416384352320288256

98

97

96

95

94

93

92

91

Number of Threads per Block

D
a
ta
b
a
s
e
 S
e
a
rc
h
 T
im
e
 (
m
s
)

Large Malicious Search Test Mean Values

(d) Mean database search times and confidence
intervals for 256 - 512 threads per block for large
malicious files.

Figure 4.2: Mean database search times and confidence intervals for 256 - 512
threads per block on a GPU.

Based on the search times in Figure 4.2, 512 threads per block are used for

Experiment 3 in searching the malware database for MD5 hash matches. This is the

optimal number of threads per block on a XFX GeForce 9500 GT GPU.

4.3 Results and Analysis of Experiment 3

Experiment 3 tested the performance of a GPU against the performance of a

CPU performing similar tasks. Both sets of hardware calculated MD5 file hashes, then

compared each hash to a database of 730,336 MD5 hashes. The GPU used a linear

search, while the CPU used a binary search, when locating matches in the database.

55

Table 4.1: Probability of Correctly Identifying Files.

Hardware File Types
Probability of
Correct
Identification

GPU Small Benign 1.0
GPU Small Malicious 1.0
GPU Large Benign 1.0
GPU Large Malicious 1.0

CPU Small Benign 1.0
CPU Small Malicious 1.0
CPU Large Benign 1.0
CPU Large Malicious 1.0

Table 4.2: GPU ID Times (ms).

Configuration
N

(Events)
Mean

Standard
Deviation

Standard
Error of
the Mean

(95%)
Confidence
Interval

Small Benign 100 56.9169 0.1297 0.0130 (56.8912, 56.9426)
Small Malicious 100 56.7815 0.1044 0.0104 (56.7608, 56.8022)
Large Benign 100 93.231 1.030 0.103 (93.027, 93.436)

Large Malicious 100 91.963 1.025 0.102 (91.760, 92.167)

Table 4.1 shows the probability of each type of hardware correctly identifying files. It

should be noted that in all experiments all files were correctly identified for all hard-

ware. After the experiments are completed the calculated hashes are downloaded from

device memory and compared to those calculated using HashCalc version 2.02. This

is done after the experiments so the memory transfer does not affect the experimental

results.

Table 4.2 shows the results of a one variable t-test performed on the different

configurations run on the GPU. The table gives the number of trials, the mean time

to complete the file scan, the standard deviation, the standard error of the mean,

and a 95% confidence interval for the mean. The mean value is listed in milliseconds.

The time required for the GPU to process the files ranges from 56.7815 to 93.963

milliseconds

56

Table 4.3: CPU Implementation Times (ms).

Configuration
N

(Events)
Mean

Standard
Deviation

Standard
Error
of the
Mean

(95%)
Confidence
Interval

Small Benign 100 317.973 1.938 0.194 (317.589, 318.358)
Small Malicious 100 315.256 1.893 0.189 (314.881, 315.632)
Large Benign 100 636.513 3.351 0.335 (635.848, 637.178)

Large Malicious 100 625.963 7.739 0.774 (624.427, 627.499)

Table 4.3 shows the results of a one variable t-test performed on the different

configurations run on the CPU. The table gives the number of trials, the mean time

to complete the file scan, the standard deviation, the standard error of the mean,

and a 95% confidence interval for the mean. The mean value is listed in milliseconds.

The time required for the CPU to process the files ranges from 315.256 to 636.513

milliseconds.

Figure 4.3 shows the 95% confidence interval plots of the time required to scan

and identify files. In all cases the confidence intervals do not overlap, which suggests

that the differences are statistically significant. The GPU performs better than the

CPU for all groups of files. For small benign files the GPU is on average, 261.0561

milliseconds faster than the CPU, 258.4745 milliseconds faster for small malicious

files, 543.282 milliseconds faster for large benign files, and 534 milliseconds faster for

large malicious files. The figures also show that the benign files take slightly longer

on both sets of hardware.

Hypothesis tests are performed between the GPU and CPU, to further determine

the statistical significance of these results. As shown in Table 4.4, the p-value for

the one-sided test for all four file groupings is 0.000, indicating a strong statistical

certainty that the GPU outperforms the CPU in all cases.

Table 4.5 shows the percentage change from CPU for the GPU for all config-

urations. Analyzing the data in this table, combined with the data from Tables 4.2

and 4.3, the following observations are made:

57

GPUCPU

350

300

250

200

150

100

50

Small Benign

G
P
U
 I
D
 P
ro
g
ra
m
 T
im
e
 (
m
s
)

95% CI for the Mean

Time Required for the GPU ID Program

(a) Time required for small benign files.

GPUCPU

350

300

250

200

150

100

50

Small Malicious

G
P
U
 I
D
 P
ro
g
ra
m
 T
im
e
 (
m
s
)

95% CI for the Mean

Time Required for the GPU ID Program

(b) Time required for small malicious files.

GPUCPU

700

600

500

400

300

200

100

Large Benign

G
P
U
 I
D
 P
ro
g
ra
m
 T
im
e
 (
m
s
)

95% CI for the Mean

Time Required for the GPU ID Program

(c) Time required for large benign files.

GPUCPU

700

600

500

400

300

200

100

Large Malicious

G
P
U
 I
D
 P
ro
g
ra
m
 T
im
e
 (
m
s
)

95% CI for the Mean

Time Required for the GPU ID Program

(d) Time required for large malicious files.

Figure 4.3: Time Required for the GPU ID Program to Identify Files.

Table 4.4: Hypothesis Testing on Performance of the CPU.

Alternative Hypothesis with
95% Confidence Interval

Estimate for
Difference

T Value
of

Difference Test

P Value
of

Difference Test
GPU(Small Benign)<
CPU(Small Benign) 261.056 1343.92 0.000

GPU(Small Malicious)<
CPU(Small Malicious) 258.475 1363.42 0.000

GPU(Large Benign)<
CPU(Large Benign) 543.282 1549.73 0.000

GPU(Large Malicious)<
CPU(Large Malicious) 534.000 684.02 0.000

58

Table 4.5: Percentage Change of Configurations of a GPU from a CPU.

Configuration Percentage Change from CPU

Small Benign 82.10%
Small Malicious 81.99%
Large Benign 85.35%

Large Malicious 85.31%

• For scanning files 0 - 96 kB on a GPU, system performance increased 82% over

the CPU.

• For scanning files 96 - 192 kB on a GPU, system performance increased 85%

over the CPU.

4.4 Overall Analysis

The results from Experiment 1 and 2 assist in the configuration of Experiment

3. While Experiment 1 does not provide clear results as to the correct number of

threads per block to use, it does provide an answer as to what not to use. With this

information and other research [Jur08], a reasonable number of threads per block,

63, is used in Experiment 3. Experiment 2 presents clear evidence to use 512 thread

per block when searching the database, the maximum number of threads per block

allowed on the GeForce 9500 GT GPU. It is possible that performance could increase

if a GPU that allowed more threads per block were used. Experiment 3 reveals the

increased performance a GPU offers over a CPU. The GPU increased performance

over 82% even with a slower processor clock. There are four reasons for this large

increase in performance:

• The file data is cache coherent and is only accessed once during hashing so there

is no gain from cached memory as found with a CPU.

• The GPU has four stream processors compared to the one processor on the

CPU. The four processors can each work individually, in parallel, unlike the

single core CPU.

59

• The thread scheduling ability of the GPU hides memory latency and maximizes

bandwidth.

• The GPU allows memory transactions to be combined into a single transaction

reducing the amount of memory requests and increasing performance.

4.5 Summary

This chapter details and analyzes the results from the three experiments. A

statistical analysis of the performance metric, execution time, is performed for Ex-

periment 3. Finally an overall analysis of the results from the experiments is provided.

The results show that a GPU increases performance over 82% from a CPU, while cor-

rectly identifying the files 100% of the time.

60

V. Conclusions

This chapter presents the conclusions drawn from the research. Section 5.1 com-

pares the research goals with the experimental results to determine if the re-

search objectives were met. The significance of the research is presented in Section

5.2. Finally, Section 5.3 provides recommendations for future work and expansion for

this research.

For Goal #1, detecting Malicious and Benign Files Using Predetermined Signa-

tures, the hypothesis is a GPU would detect 100% of the known malware. For Goal

#2, measuring the Performance of a GPU, the hypothesis is a GPU will decrease

detection time, while processing executables faster than a CPU. For Goal #3, finding

the Optimal Number of Threads per Block, the hypothesis is the optimal number of

threads per block for calculating MD5 hashes is 63, while the optimal number for

searching the database for a signature match is 512.

5.1 Conclusions of Research

5.1.1 Goal #1: Correctly Detect Malicious and Benign File Using Predeter-

mined Signatures. The first goal of this research is to correctly detect malicious

and benign files using predetermined signatures on a GPU. The GPU ID system and

the software implementation for the CPU are both able to correctly identify 100% of

the files in all three experiments. The 100% accuracy of the system meets the stated

goal and proves the hypothesis.

5.1.2 Goal #2: Measure the Performance of a GPU. The second goal of

this research is to measure the performance of a GPU while detecting malware using

predetermined signatures. The GPU ID system is tested against a CPU performing

the same task and the required execution times compared. Experiment 3 reveals

that the GPU ID system is at least 82% faster than the CPU implementation. The

increase in performance when using a GPU, instead of a CPU, meets the stated goal

and proves the hypothesis.

61

5.1.3 Goal #3: Find the Optimal Number of Threads per Block. The third

goal of this research is to find the optimal number of threads per block for calculating

MD5 files hashes and search a database of MD5 signatures on a GPU. Experiment 1

reveals that there is not a clear answer to calculating MD5 file hashes part of this goal,

thus failing to meet the hypothesis of 63 threads per block. Experiment 1 did reveal

that using a number of threads per block less than 40 would be suboptimal. Exper-

iment 2 reveals that 512 threads per block is optimal when searching the database,

thus meeting the goal and proving the hypothesis.

5.2 Significance of Research

This research provides the Air Force and other government agencies with a

faster method to scan large amounts of files quickly for a predetermined signature.

This system differs from other methods because it offloads part of the computation to

a mainstream GPU. Since this is a mainstream GPU, it is readily available in newer

PCs. It also reduces the overall load on the PC; increasing the usability of the PC to

the user. Finally, this system can be easily expanded to include additional file types

and hashing algorithms.

The GPU ID system is a passive system and therefore attractive to network

administrators. The use of a GPU requires only that a supported GPU be installed

on the target machine, and the GPU ID system be installed. In the event the GPU is

not available then the system would continue protecting the target machine by using

the CPU. This gives the system flexibility in case of a GPU failure.

When fully implemented, the GPU ID system is an effective tool in the fight

against malware. It will decrease the scanning time allowing for quicker notification

of an infected file and reduce the resource contention on the PC allowing greater

usability of the system while scanning is taking place. It can also be used to scan

large shares of files, either for malicious files or for changes made to files. This will

increase the protection offered to both the files and users.

62

Finally, the GPU ID system should be considered as a tool to quickly scan

recovered media or data for keywords, attributes, or other identifying markers. This

could be of use to forensic investigators, custom agents, law enforcement agencies,

network intrusion detection systems, firewall based applications, and anti-malware

applications that would need to quickly identify a small subset of data from a larger

set. This would reduce the amount of time required and could easily be adapted to

just about any environment.

5.3 Recommendations for Future Research

The next logical step for this research is to expand the system and look at files

of all sizes, not just files between 0 - 192 kB. The GPU ID system should be tested

on a workstation that would mimic that of an actual user. The workstation should

include files of all types including executable, html, pdf, Microsoft Office files, etc.,

so the system can be throughly tested. It would also be a good idea to explore the

performance impact of grouping files by size on a GPU, similar to Bhattarakosol and

Suttichaya’s research [BhS07].

MD5 hashing is not the only way to detect malicious files. Future research could

include expanding the system to use string matching techniques or other analysis to

classify files. These techniques could even be mixed to other an improved and efficient

detection tool. These techniques could also include using a different hashing algorithm

that is more efficient in a parallel environment.

Applying the GPU to deobfuscation and unpacking of files before scanning is

another area of future research. This research assumes that the files are not encrypted

or obfuscated. Given the large amount of malicious files that are obfuscated or packed,

it would be a good idea to offload part of this capability to the GPU to reduce the

resource cost on the CPU. This would require research into the possible techniques

that would and would not work on a GPU.

63

Lastly, the GPU ID system could be applied to network traffic, by programming

it to look for the signatures of network attacks or network security problems. The

system may be capable of processing a large amount of network traffic at a gateway,

refining the results, and presenting a network administrator with a clear picture of

the state of the network. This would help to detect and begin mitigation steps on

reducing a cyber attack to a government network.

64

VI. Experimental Data

This appendix contains the raw data collected during the experiments. Section

A.1 contains data from Experiment 1. Section A.2 contains data from Experi-

ment 2. Section A.3 contains data from Experiment 3.

6.1 Experimental Data of Experiment 1

The means are only presented here because of space requirements. All means are

in milliseconds (ms). In Table F.1, Small Benign is abbreviated as SB, Large Benign

is abbreviated as LB, Small Malicious is abbreviated as SM, and Large Malicious is

abbreviated as LM.

Mean Data (ms)

Threads Per Block Events SB LB SM LM

1 50 0.033985632 0.03426362 0.033941116 0.03386122

2 50 0.024770054 0.02633144 0.024567304 0.02775737

3 50 0.02146952 0.023717544 0.022855154 0.023036406

4 50 0.02143729 0.021402952 0.020912238 0.021390478

5 50 0.021107526 0.021434282 0.02046363 0.022841732

6 50 0.020908478 0.020450438 0.020710486 0.02142827

7 50 0.02098051 0.020989078 0.021104568 0.021149928

8 50 0.020778806 0.020978852 0.020881814 0.020172312

9 50 0.020399214 0.021491978 0.020341814 0.020234104

10 50 0.020644472 0.020459768 0.020754848 0.020339568

11 50 0.020426588 0.020490344 0.020972182 0.021029576

12 50 0.021197692 0.02042763 0.021738732 0.021024724

13 50 0.020282728 0.020209442 0.021089826 0.020466236

14 50 0.020611788 0.01997717 0.0205946 0.020830592

15 50 0.020198314 0.019893512 0.020249248 0.020055668

16 50 0.019802988 0.020293048 0.019870952 0.019606344

17 50 0.019858528 0.019273772 0.019324004 0.019109514

18 50 0.020410042 0.020266434 0.019578122 0.019221042

19 50 0.019402588 0.019754064 0.019947096 0.019210864

20 50 0.020245436 0.01983577 0.019621084 0.019881478

21 50 0.019178236 0.01881774 0.019101596 0.01981011

22 50 0.019125856 0.019909998 0.018790476 0.019540692

23 50 0.019078986 0.018910972 0.018973938 0.018990472

24 50 0.019130666 0.018930624 0.01928806 0.018975634

25 50 0.01881148 0.01919668 0.019226652 0.018842604

26 50 0.019184746 0.01939332 0.019828444 0.019338186

27 50 0.01912199 0.0191057 0.019224354 0.01841263

28 50 0.018840092 0.019307048 0.0189014 0.018648022

29 50 0.01912014 0.019517532 0.019237928 0.019173322

30 50 0.01925458 0.01880867 0.018928716 0.01874967

31 50 0.019278288 0.019269958 0.019470868 0.019555474

32 50 0.019347658 0.01942415 0.019012876 0.019566546

33 50 0.018987412 0.018896734 0.018698344 0.019100894

34 50 0.018985506 0.018873638 0.01901964 0.019116236

Continued on next page

65

Table F.1 – continued from previous page

Threads Per Block Events SB LB SM LM

35 50 0.018474938 0.018807764 0.01933377 0.019017888

36 50 0.01974956 0.019304652 0.019031874 0.018930024

37 50 0.019772658 0.019388004 0.018811574 0.019146404

38 50 0.019217232 0.019132726 0.018910922 0.019830554

39 50 0.019084954 0.01953678 0.01891142 0.018779894

40 50 0.017265646 0.017934948 0.016891366 0.017213006

41 50 0.016766908 0.017424684 0.01674239 0.01744869

42 50 0.016866396 0.017391056 0.017645432 0.018334398

43 50 0.017277868 0.016619846 0.017479426 0.017422436

44 50 0.016780836 0.016931156 0.016758326 0.017161074

45 50 0.016753668 0.016913018 0.017148498 0.017197716

46 50 0.01679051 0.017112162 0.017191012 0.016796326

47 50 0.016824398 0.017223234 0.016843944 0.016996368

48 50 0.016774574 0.017133512 0.01652756 0.017185598

49 50 0.016811108 0.017147956 0.016657684 0.017002286

50 50 0.016719484 0.017177476 0.017104638 0.016417642

51 50 0.016696678 0.018059806 0.01722178 0.016901742

52 50 0.01681542 0.017190006 0.016990254 0.01737341

53 50 0.0169062 0.01722223 0.017060732 0.018437048

54 50 0.016844998 0.0169252 0.016820536 0.017468996

55 50 0.01683046 0.017805928 0.016634974 0.017192154

56 50 0.017104738 0.017198978 0.01680209 0.018389132

57 50 0.016657782 0.017042586 0.01703096 0.01707316

58 50 0.017102534 0.017256268 0.017387594 0.016786296

59 50 0.01703607 0.01696971 0.017316614 0.017304534

60 50 0.016724298 0.017352352 0.016871508 0.016722892

61 50 0.016681236 0.017421374 0.01704986 0.016655078

62 50 0.017236814 0.01764158 0.01672264 0.016917132

63 50 0.017196066 0.017377212 0.016808002 0.01746383

64 50 0.017214762 0.016770518 0.016794564 0.018113192

65 50 0.01680931 0.016892062 0.016803286 0.017283086

66 50 0.016811262 0.017027752 0.0168065 0.017265542

67 50 0.016819032 0.017361326 0.017284186 0.017216122

68 50 0.01728208 0.017268246 0.017079472 0.017088854

69 50 0.017318368 0.01707301 0.016843992 0.01692409

70 50 0.016934568 0.017432152 0.016757832 0.01725371

71 50 0.016779286 0.01716664 0.016689814 0.016772014

72 50 0.016741638 0.017353508 0.016904438 0.016584298

73 50 0.016560446 0.017549096 0.017235566 0.017241134

74 50 0.01697853 0.017340424 0.017556062 0.01787651

75 50 0.017638118 0.017171058 0.017370146 0.01804647

76 50 0.01688134 0.017148902 0.01699362 0.01690475

77 50 0.016964446 0.017178426 0.016593824 0.017478878

78 50 0.017070356 0.017193804 0.017059468 0.017114764

79 50 0.01663999 0.017196972 0.016782042 0.016898422

80 50 0.016987694 0.017140426 0.016728654 0.016725296

81 50 0.017217116 0.017082238 0.016624352 0.017135364

82 50 0.016820286 0.016950354 0.017101586 0.01681397

83 50 0.016745352 0.017617464 0.017050158 0.016820194

84 50 0.017116026 0.017991696 0.01687672 0.017286838

85 50 0.016893768 0.017358322 0.016960984 0.01816206

86 50 0.016895674 0.01714714 0.016602044 0.017561172

87 50 0.016664446 0.016708562 0.01686169 0.017306688

88 50 0.016890206 0.017131906 0.016970152 0.017606136

Continued on next page

66

Table F.1 – continued from previous page

Threads Per Block Events SB LB SM LM

89 50 0.01650931 0.017111456 0.017193208 0.016832464

90 50 0.017247242 0.017575406 0.017577064 0.01691071

91 50 0.017021232 0.016984794 0.017507748 0.01717923

92 50 0.01695733 0.017216272 0.016917276 0.017898256

93 50 0.016687704 0.01708138 0.01668215 0.01697627

94 50 0.01814006 0.017638514 0.018093792 0.016792516

95 50 0.016970408 0.017698314 0.017233514 0.017594354

96 50 0.01709246 0.016905242 0.01690635 0.018034002

97 50 0.016816924 0.016915014 0.016531872 0.017182188

98 50 0.016525754 0.017017124 0.01685026 0.017338068

99 50 0.016752122 0.017511902 0.017080328 0.017206296

100 50 0.01729872 0.017163936 0.016780034 0.016980584

101 50 0.016861638 0.016823904 0.017028604 0.016664546

102 50 0.016752912 0.017708842 0.016865798 0.016992062

103 50 0.016491528 0.017299572 0.016851264 0.01725211

104 50 0.01666881 0.017066596 0.016930018 0.016903946

105 50 0.01645588 0.018006528 0.01707086 0.0172693

106 50 0.01704449 0.017331656 0.017388744 0.017999208

107 50 0.017034716 0.017082486 0.01746819 0.017684636

108 50 0.016646806 0.017147742 0.01695331 0.017582726

109 50 0.016792366 0.016989252 0.01705337 0.01737902

110 50 0.016932314 0.017733402 0.017123836 0.017208

111 50 0.016528108 0.017111762 0.017106338 0.016885094

112 50 0.017171354 0.016921136 0.016916974 0.016999626

113 50 0.01703842 0.01695933 0.016689804 0.016933372

114 50 0.01668791 0.017172158 0.017303086 0.017385692

115 50 0.016929856 0.017491346 0.0170672 0.01687056

116 50 0.017146346 0.017534654 0.017242588 0.017781168

117 50 0.016913112 0.017366786 0.01698685 0.018073598

118 50 0.016731216 0.017225792 0.016670008 0.01715366

119 50 0.016579638 0.01701617 0.017110906 0.017615712

120 50 0.016732056 0.017519564 0.016744902 0.017337672

121 50 0.01663718 0.017503922 0.017037426 0.0171042

122 50 0.017097472 0.016869662 0.017668434 0.016910058

123 50 0.017297176 0.01722664 0.01728545 0.016736074

124 50 0.017679064 0.016964352 0.017082092 0.016690608

125 50 0.0169042 0.017222382 0.016674578 0.017319168

126 50 0.017146198 0.017426442 0.016809912 0.016876768

127 50 0.016697226 0.017719518 0.016954464 0.017937452

128 50 0.017001836 0.017630098 0.016800194 0.01788007

129 50 0.017156572 0.016968702 0.016566548 0.017213104

130 50 0.016762184 0.016941338 0.017053106 0.017532648

131 50 0.01665137 0.017452408 0.017739668 0.01729121

132 50 0.01705753 0.017382632 0.017002078 0.01704885

133 50 0.016908954 0.017113408 0.016736734 0.016864742

134 50 0.016917882 0.017000128 0.016817526 0.016634878

135 50 0.017088842 0.017063038 0.016856878 0.017575304

136 50 0.016810614 0.017346388 0.017043342 0.017510454

137 50 0.016709312 0.017096964 0.01713517 0.017722524

138 50 0.017481432 0.0177331 0.017254164 0.017799718

139 50 0.017229654 0.017355312 0.017590844 0.017193308

140 50 0.016704096 0.01732764 0.016935724 0.017315118

141 50 0.016774774 0.017420376 0.01675022 0.017429348

142 50 0.016874366 0.017253006 0.017152956 0.017124738

Continued on next page

67

Table F.1 – continued from previous page

Threads Per Block Events SB LB SM LM

143 50 0.016694022 0.01687382 0.016890812 0.017167504

144 50 0.017065994 0.016799582 0.016764602 0.017859012

145 50 0.017080488 0.017129604 0.016535982 0.0171873

146 50 0.016640938 0.01724253 0.016848006 0.016974572

147 50 0.016454976 0.017372006 0.016901838 0.017512406

148 50 0.017354512 0.016956074 0.017328854 0.017816156

149 50 0.017171852 0.01747396 0.016780588 0.016997776

150 50 0.016834182 0.017332508 0.01666214 0.017337566

151 50 0.016931856 0.01746939 0.016715328 0.017399622

152 50 0.016645254 0.017376664 0.0167662 0.017559966

153 50 0.01662134 0.016786544 0.017116678 0.016903896

154 50 0.016866152 0.01824502 0.017519018 0.017108452

155 50 0.01711321 0.017104646 0.01758718 0.016849458

156 50 0.01696534 0.017320172 0.016629612 0.016794522

157 50 0.016975524 0.01783806 0.017083788 0.016995522

158 50 0.017027552 0.017364632 0.017059582 0.018720844

159 50 0.016753622 0.017161986 0.017023738 0.017759114

160 50 0.016745846 0.01732133 0.016956776 0.016958726

161 50 0.017187042 0.017571354 0.016572876 0.01867523

162 50 0.01681132 0.017557814 0.017345038 0.017420628

163 50 0.016809064 0.016702642 0.016855368 0.017184036

164 50 0.017714608 0.016917978 0.01698294 0.016863446

165 50 0.017047444 0.017011362 0.016996672 0.017010864

166 50 0.017140784 0.017061094 0.01698389 0.01681472

167 50 0.01667157 0.017479616 0.01685267 0.01698229

168 50 0.016956174 0.016897928 0.017008548 0.01731837

169 50 0.016693572 0.017275212 0.01700805 0.018634878

170 50 0.017484542 0.016903796 0.017560622 0.017194706

171 50 0.017006248 0.017647084 0.017339378 0.01708915

172 50 0.017284036 0.017537816 0.01679913 0.017370948

173 50 0.016754924 0.016912312 0.016858274 0.016963444

174 50 0.016954268 0.01694009 0.017246502 0.017231658

175 50 0.016743296 0.016910314 0.016691216 0.016929602

176 50 0.01699838 0.017091056 0.016498792 0.016868302

177 50 0.017030764 0.017129204 0.01653728 0.016853522

178 50 0.01678696 0.016888108 0.017159376 0.017047996

179 50 0.0167459 0.016985494 0.017200578 0.017609042

180 50 0.017215464 0.01721812 0.016901584 0.018163518

181 50 0.017098774 0.017286592 0.016613572 0.016992962

182 50 0.017136066 0.017556868 0.016738982 0.017176462

183 50 0.016734376 0.01780663 0.01695783 0.017140176

184 50 0.016667504 0.017058578 0.017012868 0.017022888

185 50 0.016697726 0.017370654 0.017099674 0.017203442

186 50 0.01728494 0.016953916 0.017243786 0.016916776

187 50 0.017141934 0.017247898 0.017572254 0.016963646

188 50 0.017235166 0.017446136 0.016854364 0.016804396

189 50 0.017133118 0.01695036 0.017105896 0.017359614

190 50 0.01684635 0.017317866 0.016826498 0.017803926

191 50 0.017266388 0.017323478 0.017078168 0.017841724

192 50 0.017023138 0.017478564 0.01666575 0.01706379

193 50 0.017042686 0.017727084 0.017231558 0.017061082

194 50 0.016630764 0.017911188 0.017155114 0.017035866

195 50 0.016880632 0.017515654 0.01671497 0.016684692

196 50 0.01732082 0.017040984 0.01667192 0.017409098

Continued on next page

68

Table F.1 – continued from previous page

Threads Per Block Events SB LB SM LM

197 50 0.017104488 0.017065846 0.017028454 0.017432752

198 50 0.016862942 0.017336164 0.0170082 0.017175714

199 50 0.016695022 0.017161236 0.016747252 0.016987852

200 50 0.016769008 0.016754868 0.016758178 0.01768242

201 50 0.01677071 0.016962234 0.016757686 0.017751246

202 50 0.016852262 0.017107994 0.01758824 0.017372308

203 50 0.01710635 0.017299728 0.017322384 0.017438114

204 50 0.017231058 0.01808332 0.016807806 0.017159478

205 50 0.017117372 0.017513102 0.017142988 0.017035416

206 50 0.016763152 0.016972458 0.01702068 0.016983292

207 50 0.01705096 0.017150852 0.016568006 0.017422778

208 50 0.017361178 0.01712875 0.016777332 0.016811766

209 50 0.01666966 0.01757516 0.01705608 0.017079368

210 50 0.016789866 0.016915528 0.016929564 0.017270054

211 50 0.016920328 0.017125242 0.016868802 0.017802018

212 50 0.016944944 0.017044588 0.016909206 0.01746508

213 50 0.017294814 0.017378322 0.01690585 0.017439578

214 50 0.017054814 0.017496662 0.016738184 0.017324182

215 50 0.01710614 0.01764032 0.016967746 0.017170608

216 50 0.017101078 0.01726719 0.017182886 0.017242038

217 50 0.017150204 0.01712524 0.016783082 0.017098022

218 50 0.016975718 0.017238226 0.017210344 0.017162634

219 50 0.017693306 0.016961228 0.017258532 0.01700644

220 50 0.017153866 0.017136918 0.017099734 0.017389646

221 50 0.01684324 0.017084948 0.016982236 0.017345744

222 50 0.017096814 0.01719301 0.016756018 0.018183814

223 50 0.016738826 0.01720925 0.016594372 0.017097022

224 50 0.01649011 0.017693956 0.016875626 0.017540522

225 50 0.01652139 0.01735611 0.016938682 0.017137376

226 50 0.016850258 0.017038974 0.017141624 0.016719436

227 50 0.016798078 0.017432504 0.016854524 0.01687096

228 50 0.017235066 0.017248402 0.016711062 0.01693472

229 50 0.016972956 0.017416012 0.017162382 0.017205536

230 50 0.01711957 0.017572102 0.016986036 0.016904448

231 50 0.017000934 0.017317708 0.017011958 0.01716489

232 50 0.01715547 0.017301928 0.016967246 0.017855806

233 50 0.016794818 0.01715877 0.016781936 0.017315312

234 50 0.016959074 0.017151408 0.017209302 0.016932258

235 50 0.01711642 0.0178332 0.017295808 0.017844284

236 50 0.016989554 0.01712855 0.017131464 0.017108706

237 50 0.016879322 0.01771786 0.018177446 0.01684505

238 50 0.017089202 0.017471048 0.016855766 0.016966092

239 50 0.01694308 0.017197416 0.016798682 0.016764192

240 50 0.016968508 0.017361884 0.017110706 0.017421678

241 50 0.01698705 0.016960884 0.016698334 0.017310952

242 50 0.017162888 0.016911356 0.016553222 0.017772146

243 50 0.016983086 0.016961186 0.01662861 0.017810044

244 50 0.017268152 0.017025246 0.017100176 0.01729626

245 50 0.017038272 0.01715527 0.017388094 0.019869204

246 50 0.016860932 0.018220006 0.01699757 0.017577514

247 50 0.017031458 0.01762995 0.017049 0.016815426

248 50 0.01672234 0.017791944 0.016558594 0.016671012

249 50 0.016935024 0.017846982 0.01707196 0.018125526

250 50 0.017323932 0.01758258 0.017487738 0.01712559

Continued on next page

69

Table F.1 – continued from previous page

Threads Per Block Events SB LB SM LM

251 50 0.017217468 0.016989764 0.01757701 0.017865326

252 50 0.01716955 0.016695224 0.017186088 0.017419122

253 50 0.017134214 0.0181975 0.016835474 0.017953994

254 50 0.017037566 0.017171252 0.016666554 0.017429546

255 50 0.017094312 0.017557666 0.017085852 0.01705732

256 50 0.017031062 0.01777706 0.016964392 0.017246836

Table F.1: Optimal Number of Threads Per Block for Experiment 1.

6.2 Experimental Data of Experiment 2

The means are only presented here because of space requirements. All means are

in milliseconds (ms). In Table F.2, Small Benign is abbreviated as SB, Large Benign

is abbreviated as LB, Small Malicious is abbreviated as SM, and Large Malicious is

abbreviated as LM.

Mean Data (ms)

Threads Per Block Events SB LB SM LM

256 50 65.315242 95.82758 65.532198 95.82758

257 50 67.557452 98.073684 67.756028 98.073684

258 50 67.302384 97.742796 67.494524 97.742796

259 50 67.136188 97.64751 67.321912 97.64751

260 50 66.999628 97.568236 67.204166 97.568236

261 50 67.032302 97.496492 67.217302 97.496492

262 50 66.671286 97.10458 66.850304 97.10458

263 50 66.478972 96.989086 66.690924 96.989086

264 50 66.43307 96.880842 66.635874 96.880842

265 50 66.136344 96.759748 66.36113 96.759748

266 50 66.112208 96.642652 66.28433 96.642652

267 50 66.06874 96.572778 66.264904 96.572778

268 50 65.987558 96.51462 66.219234 96.51462

269 50 65.601828 96.087762 65.759404 96.087762

270 50 65.427296 95.830512 65.58991 95.830512

271 50 65.425154 95.868418 65.62395 95.868418

272 50 65.011944 95.53882 65.23428 95.53882

273 50 66.101154 96.676564 66.338932 96.676564

274 50 67.460226 97.908978 67.597926 97.908978

275 50 65.96239 96.489398 66.227466 96.489398

276 50 66.2712 96.72472 66.459178 96.72472

277 50 66.323886 96.823126 66.512492 96.823126

278 50 65.338768 95.815034 65.585032 95.815034

279 50 65.912806 96.205762 65.8999 96.205762

280 50 65.372304 95.86751 65.529636 95.86751

281 50 65.088562 95.622568 65.277294 95.622568

282 50 64.9428 95.445018 65.160282 95.445018

283 50 64.885304 95.3851 65.117222 95.3851

Continued on next page

70

Table F.2 – continued from previous page

Threads Per Block Events SB LB SM LM

284 50 64.87458 95.371966 65.071016 95.371966

285 50 65.323522 95.768272 65.51569 95.768272

286 50 64.229158 94.771724 64.422972 94.771724

287 50 65.199404 95.616952 65.287358 95.616952

288 50 64.390472 94.893002 64.514688 94.893002

289 50 66.300652 96.864924 66.493224 96.864924

290 50 66.08282 96.60152 66.28701 96.60152

291 50 65.94644 96.43864 66.093736 96.43864

292 50 65.547944 96.039588 65.753258 96.039588

293 50 65.399924 95.965816 65.612612 95.965816

294 50 65.475452 95.935952 65.68686 95.935952

295 50 65.284866 95.76794 65.443076 95.76794

296 50 65.12121 95.683188 65.320462 95.683188

297 50 65.1475 95.620014 65.339908 95.620014

298 50 64.860512 95.35295 65.059598 95.35295

299 50 64.864318 95.401916 65.047534 95.401916

300 50 64.705052 95.157358 64.919576 95.157358

301 50 64.51116 95.033116 64.690658 95.033116

302 50 64.312096 94.848932 64.558292 94.848932

303 50 64.209418 94.621436 64.38068 94.621436

304 50 64.2339 94.720758 64.418568 94.720758

305 50 64.959198 95.390044 65.13455 95.390044

306 50 64.94553 95.466592 65.140472 95.466592

307 50 64.779194 95.24051 64.946382 95.24051

308 50 64.596276 95.092078 64.793706 95.092078

309 50 64.663138 95.10945 64.862446 95.10945

310 50 64.393858 94.93793 64.602902 94.93793

311 50 64.310286 94.78691 64.52489 94.78691

312 50 64.254248 94.716652 64.440542 94.716652

313 50 64.079022 94.512206 64.28607 94.512206

314 50 64.168322 94.612736 64.352884 94.612736

315 50 63.825052 94.310496 64.01627 94.310496

316 50 63.666558 94.186396 63.885118 94.186396

317 50 64.083692 94.663736 64.243912 94.663736

318 50 63.512436 93.974344 63.689616 93.974344

319 50 63.469924 93.915186 63.603016 93.915186

320 50 63.14337 93.593726 63.330578 93.593726

321 50 65.370584 95.773888 65.493868 95.773888

322 50 65.173384 95.69544 65.383504 95.69544

323 50 65.053894 95.579412 65.254584 95.579412

324 50 64.97242 95.45083 65.188516 95.45083

325 50 64.798452 95.189308 65.002704 95.189308

326 50 64.685892 95.186118 64.856922 95.186118

327 50 64.574676 95.119612 64.76029 95.119612

328 50 64.42804 94.903306 64.606516 94.903306

329 50 64.401846 94.837634 64.55703 94.837634

330 50 64.227266 94.71826 64.452038 94.71826

331 50 64.108818 94.630516 64.266516 94.630516

332 50 63.914188 94.452776 64.124716 94.452776

333 50 63.847954 94.328866 64.054416 94.328866

334 50 63.770588 94.300128 63.946838 94.300128

335 50 63.606924 94.147938 63.83268 94.147938

336 50 63.472638 93.895482 63.66446 93.895482

337 50 64.251736 94.741706 64.419198 94.741706

Continued on next page

71

Table F.2 – continued from previous page

Threads Per Block Events SB LB SM LM

338 50 64.088538 94.662294 64.353996 94.662294

339 50 64.055002 94.583154 64.237048 94.583154

340 50 63.869338 94.414286 64.03989 94.414286

341 50 63.791504 94.31332 63.988828 94.31332

342 50 63.655708 94.166006 63.797328 94.166006

343 50 63.555204 94.010008 63.704816 94.010008

344 50 63.432052 93.92824 63.645416 93.92824

345 50 63.406742 93.86474 63.619936 93.86474

346 50 63.215298 93.688868 63.412912 93.688868

347 50 63.106672 93.647592 63.268336 93.647592

348 50 62.991786 93.51893 63.215994 93.51893

349 50 63.118286 93.61704 63.291878 93.61704

350 50 62.751586 93.231936 62.944704 93.231936

351 50 62.661338 93.133198 62.841844 93.133198

352 50 62.530526 93.021826 62.674158 93.021826

353 50 64.676048 95.148926 64.85002 95.148926

354 50 64.429994 95.014716 64.61851 95.014716

355 50 64.331802 94.848504 64.519016 94.848504

356 50 64.328104 94.738078 64.495294 94.738078

357 50 64.198052 94.71588 64.378088 94.71588

358 50 64.02508 94.53461 64.24125 94.53461

359 50 64.021872 94.487848 64.216606 94.487848

360 50 63.73946 94.280746 63.96648 94.280746

361 50 63.830722 94.286746 63.993664 94.286746

362 50 63.645776 94.169028 63.829334 94.169028

363 50 63.699612 94.11661 63.925296 94.11661

364 50 63.435804 93.921762 63.609254 93.921762

365 50 63.285568 93.781378 63.433412 93.781378

366 50 63.132746 93.656992 63.335134 93.656992

367 50 63.065618 93.558216 63.249596 93.558216

368 50 63.012422 93.566222 63.196512 93.566222

369 50 63.691096 94.168848 63.899078 94.168848

370 50 63.558424 93.969266 63.743788 93.969266

371 50 63.442128 93.931194 63.629316 93.931194

372 50 63.325536 93.765742 63.494702 93.765742

373 50 63.21567 93.69636 63.405478 93.69636

374 50 63.0661 93.59342 63.31403 93.59342

375 50 62.992054 93.500614 63.179002 93.500614

376 50 62.943298 93.368722 63.099856 93.368722

377 50 62.92936 93.354962 63.087716 93.354962

378 50 62.707368 93.195364 62.91014 93.195364

379 50 62.592104 93.182356 62.796876 93.182356

380 50 62.525594 93.03382 62.728872 93.03382

381 50 62.399842 92.84631 62.59874 92.84631

382 50 62.310162 92.735986 62.508854 92.735986

383 50 62.278196 92.774822 62.453384 92.774822

384 50 62.12574 92.611128 62.299898 92.611128

385 50 64.101746 94.735632 64.34411 94.735632

386 50 63.988914 94.502162 64.198688 94.502162

387 50 63.935596 94.419648 64.092784 94.419648

388 50 63.826088 94.339022 64.040514 94.339022

389 50 63.759188 94.218724 63.968312 94.218724

390 50 63.664824 94.16959 63.82966 94.16959

391 50 63.488544 94.014088 63.743044 94.014088

Continued on next page

72

Table F.2 – continued from previous page

Threads Per Block Events SB LB SM LM

392 50 63.46659 93.920026 63.628742 93.920026

393 50 63.444748 93.899484 63.576378 93.899484

394 50 63.299156 93.802126 63.45515 93.802126

395 50 63.16238 93.609504 63.374006 93.609504

396 50 63.089912 93.575938 63.247104 93.575938

397 50 62.943582 93.436866 63.09315 93.436866

398 50 62.874564 93.287234 63.0362 93.287234

399 50 62.836612 93.31493 62.995902 93.31493

400 50 62.67531 93.185296 62.89574 93.185296

401 50 63.236386 93.732246 63.451574 93.732246

402 50 63.160856 93.66701 63.36876 93.66701

403 50 63.044694 93.579368 63.273718 93.579368

404 50 62.922228 93.39722 63.080496 93.39722

405 50 62.868514 93.430324 63.057376 93.430324

406 50 62.780672 93.276422 62.991924 93.276422

407 50 62.656542 93.185818 62.89401 93.185818

408 50 62.603488 93.075668 62.813334 93.075668

409 50 62.529432 92.96498 62.7263 92.96498

410 50 62.468682 92.933612 62.715838 92.933612

411 50 62.31576 92.922064 62.528106 92.922064

412 50 62.271434 92.765148 62.43548 92.765148

413 50 62.10282 92.630796 62.288746 92.630796

414 50 62.048958 92.56442 62.240122 92.56442

415 50 61.980828 92.396708 62.182354 92.396708

416 50 61.898248 92.390418 62.07067 92.390418

417 50 63.757822 94.199252 64.011126 94.199252

418 50 63.747238 94.193492 63.926652 94.193492

419 50 63.63372 94.140228 63.85627 94.140228

420 50 63.524168 94.033878 63.729844 94.033878

421 50 63.39298 93.876492 63.557572 93.876492

422 50 63.297534 93.851686 63.505244 93.851686

423 50 63.253914 93.732274 63.45577 93.732274

424 50 63.26186 93.729204 63.445584 93.729204

425 50 63.098382 93.593184 63.326354 93.593184

426 50 63.004078 93.521806 63.22156 93.521806

427 50 62.945276 93.348684 63.090242 93.348684

428 50 62.844156 93.337032 63.038864 93.337032

429 50 62.713314 93.149962 62.912086 93.149962

430 50 62.717388 93.179434 62.901272 93.179434

431 50 62.540686 93.010102 62.725642 93.010102

432 50 62.46921 92.936708 62.667358 92.936708

433 50 62.916698 93.397638 63.123184 93.397638

434 50 62.864822 93.388858 63.08192 93.388858

435 50 62.777958 93.326872 62.989626 93.326872

436 50 62.688196 93.108924 62.839966 93.108924

437 50 62.64639 93.122962 62.802934 93.122962

438 50 62.60318 92.986972 62.744756 92.986972

439 50 62.43262 92.866108 62.597068 92.866108

440 50 62.410448 92.863992 62.565716 92.863992

441 50 62.222272 92.775338 62.450836 92.775338

442 50 62.223828 92.681492 62.39524 92.681492

443 50 62.183922 92.673244 62.334622 92.673244

444 50 62.028716 92.590634 62.21471 92.590634

445 50 61.972136 92.49041 62.13308 92.49041

Continued on next page

73

Table F.2 – continued from previous page

Threads Per Block Events SB LB SM LM

446 50 61.856486 92.32328 62.051722 92.32328

447 50 61.73686 92.314742 61.953212 92.314742

448 50 61.664184 92.18511 61.910536 92.18511

449 50 63.56632 94.109006 63.755468 94.109006

450 50 63.470874 93.901104 63.589456 93.901104

451 50 63.35012 93.891086 63.563962 93.891086

452 50 63.214684 93.716108 63.411672 93.716108

453 50 63.17108 93.723206 63.350994 93.723206

454 50 63.151602 93.686376 63.33025 93.686376

455 50 62.978232 93.388168 63.170262 93.388168

456 50 62.892108 93.403178 63.099096 93.403178

457 50 62.829068 93.308392 62.996032 93.308392

458 50 62.809028 93.315524 62.988626 93.315524

459 50 62.652454 93.153136 62.83862 93.153136

460 50 62.515168 93.080182 62.702172 93.080182

461 50 62.470394 92.91045 62.660478 92.91045

462 50 62.432032 92.96542 62.61926 92.96542

463 50 62.394368 92.921378 62.611048 92.921378

464 50 62.255846 92.867358 62.459372 92.867358

465 50 62.76694 93.287336 62.971302 93.287336

466 50 62.631706 93.22226 62.79788 93.22226

467 50 62.531724 93.008108 62.726274 93.008108

468 50 62.519618 92.997274 62.718062 92.997274

469 50 62.422652 92.949038 62.632436 92.949038

470 50 62.411128 92.898304 62.609642 92.898304

471 50 62.306274 92.749788 62.429138 92.749788

472 50 62.178252 92.691684 62.327106 92.691684

473 50 62.145268 92.650702 62.298736 92.650702

474 50 62.007194 92.546266 62.203042 92.546266

475 50 61.946034 92.471782 62.147474 92.471782

476 50 61.86966 92.399158 62.060872 92.399158

477 50 61.818658 92.274294 62.013942 92.274294

478 50 61.751688 92.279796 61.89728 92.279796

479 50 61.696632 92.222286 61.889994 92.222286

480 50 61.66354 92.136778 61.845024 92.136778

481 50 63.237168 93.6948 63.44131 93.6948

482 50 63.099736 93.532616 63.274786 93.532616

483 50 62.984074 93.561094 63.202538 93.561094

484 50 63.010254 93.559472 63.196944 93.559472

485 50 62.911478 93.370686 63.094124 93.370686

486 50 62.79191 93.336546 62.963298 93.336546

487 50 62.707348 93.26485 62.91257 93.26485

488 50 62.702436 93.175306 62.924982 93.175306

489 50 62.65132 93.124708 62.874196 93.124708

490 50 62.55083 93.069484 62.734496 93.069484

491 50 62.403118 92.943548 62.64749 92.943548

492 50 62.278298 92.869124 62.537142 92.869124

493 50 62.351302 92.874166 62.570412 92.874166

494 50 62.218724 92.691466 62.390366 92.691466

495 50 62.162724 92.677014 62.330142 92.677014

496 50 62.111538 92.575016 62.323948 92.575016

497 50 62.633926 93.09796 62.815728 93.09796

498 50 62.486764 92.999614 62.687048 92.999614

499 50 62.359592 92.802046 62.51899 92.802046

Continued on next page

74

Table F.2 – continued from previous page

Threads Per Block Events SB LB SM LM

500 50 62.308164 92.77276 62.49983 92.77276

501 50 62.213168 92.667128 62.38126 92.667128

502 50 62.1551 92.617644 62.299024 92.617644

503 50 62.078394 92.46834 62.237738 92.46834

504 50 62.049758 92.547482 62.21845 92.547482

505 50 61.914326 92.46992 62.107588 92.46992

506 50 61.867752 92.368892 62.101636 92.368892

507 50 61.73346 92.227582 61.950372 92.227582

508 50 61.756856 92.204648 61.944842 92.204648

509 50 61.748814 92.191808 61.926304 92.191808

510 50 61.568434 92.105052 61.78038 92.105052

511 50 61.496866 92.047068 61.651456 92.047068

512 50 61.41264 91.854308 61.60497 91.854308

Table F.2: Optimal Number of Threads Per Block for Experiment2.

6.3 Experimental Data of Experiment 3

All data is in milliseconds (ms). In Table F.3, Small Benign is abbreviated as

SB, Large Benign is abbreviated as LB, Small Malicious is abbreviated as SM, and

Large Malicious is abbreviated as LM.

Events SB CPU LB CPU SM CPU LM CPU SB GPU LB GPU SM GPU LM GPU

1 314.248 636.847 312.474 623.717 56.8802 92.1577 56.7218 91.5893

2 317.053 637.315 315.446 622.332 57.0006 92.3109 57.0752 92.504

3 321.086 631.214 315.459 624.36 56.9189 92.581 56.8204 92.7973

4 316.816 634.637 316.574 620.267 57.0405 93.2986 56.839 90.7832

5 317.277 639.881 318.111 627.557 56.9328 91.5904 56.7066 90.0244

6 320.972 633.035 315.461 622.042 56.9852 93.6586 56.754 92.1479

7 319.679 639.744 316.05 625.443 56.7821 92.5316 56.8074 92.8506

8 317.541 640.488 316.297 622.254 56.7744 93.2836 56.5845 91.8376

9 317.681 639.032 315.577 620.971 57.0198 92.7988 56.769 90.5407

10 317.859 634.569 316.711 627.648 56.8579 92.3656 56.8629 91.2413

11 317.999 634.839 315.283 624.99 56.8328 93.9353 56.7711 93.3886

12 319.088 634.002 314.454 627.789 57.0334 92.8371 56.9185 93.1833

13 316.653 636.847 316.565 628.592 56.9617 93.5508 56.7978 91.7595

14 315.651 640.689 317.272 632.158 57.0402 94.0533 56.8191 93.3791

15 320.555 639.851 312.474 622.269 56.9277 94.379 57.278 92.6727

16 320.015 635.18 314.463 627.684 56.9486 92.6155 56.8097 92.7205

17 316.95 633.241 314.876 628.423 57.0859 94.75 56.7299 91.2154

18 316.204 637.137 317.623 623.619 56.9034 93.7253 56.6835 92.1806

19 320.228 636.769 313.625 622.848 56.7484 92.92 56.7581 91.7458

20 317.53 628.466 313.932 626.35 57.08 92.7985 56.903 93.5025

21 318.009 638.32 313.912 624.68 57.0178 94.58 56.7351 91.6921

22 319.448 636.382 313.579 629.376 57.011 93.2763 56.8623 94.1166

23 318.237 632.51 313.862 624.223 56.9086 93.3404 56.807 92.6381

24 317.978 640.774 316.191 627.215 57.0348 93.5992 56.803 91.0175

Continued on next page

75

Table F.3 – continued from previous page

Events SB CPU LB CPU SM CPU LM CPU SB GPU LB GPU SM GPU LM GPU

25 314.248 638.636 313.67 625.215 56.9855 92.515 56.7565 93.9315

26 319.499 644.978 314.623 623.717 57.0095 94.3517 56.9475 93.2017

27 320.223 636.911 314.36 621.843 57.0354 92.8553 56.8606 94.4907

28 317.371 639.348 313.546 628.074 56.9845 94.2184 56.7861 90.834

29 319.228 639.521 316.068 616.857 56.9302 94.1694 56.6356 90.4273

30 320.119 634.829 317.73 620.787 56.9857 93.1342 56.7136 91.01

31 318.409 637.068 319.5 617.947 56.9044 93.9552 56.9167 90.6423

32 317.316 634.555 317.14 620.298 56.9988 91.2111 56.9387 90.9696

33 321.855 634.985 316.503 631.721 56.971 93.6552 56.613 91.2384

34 319.228 629.789 315.411 622.921 56.8139 94.5369 56.7056 91.348

35 318.903 633.934 314.54 616.182 56.9161 94.6496 56.8231 93.6968

36 317.669 634.349 317.046 626.144 56.8856 93.5987 56.8026 92.2297

37 321.163 634.17 318.151 624.959 56.8225 93.9171 56.733 91.1016

38 315.424 638.834 313.442 621.492 57.0079 91.92 56.6338 90.8833

39 315.833 641.672 314.662 624.453 56.9047 93.4767 56.8077 91.4768

40 319.039 640.15 319.942 620.65 56.8323 91.8321 56.6708 90.2705

41 320.296 639.799 314.189 619.895 56.9453 91.1203 56.8006 91.4463

42 320.376 636.582 315.906 628.11 56.8566 92.2345 56.8921 92.7863

43 318.237 634.554 312.548 622.961 56.9028 93.1009 56.6661 91.1957

44 316.822 630.137 314.653 625.054 56.5871 92.8612 56.8528 92.4402

45 319.414 636.068 313.53 623.481 56.5444 93.0483 56.6442 91.7361

46 315.742 641.039 318.273 623.787 56.5848 94.568 56.69 90.9666

47 315.959 637.581 313.091 623.641 56.5931 94.1953 56.8295 91.1006

48 317.895 637.443 316.228 630.141 56.7814 92.494 56.9042 93.3762

49 316.357 634.062 314.291 622.091 56.6786 94.5461 56.8021 94.161

50 318.103 642.219 316.689 624.703 56.57 95.6105 56.6916 91.6719

51 321.446 640.849 317.301 623.924 56.5119 94.5341 56.7481 91.5844

52 317.526 628.831 314.052 622.871 56.5606 91.7812 56.8866 91.1363

53 317.038 633.643 317.033 623.766 56.8693 92.6903 56.6355 92.0767

54 316.941 634.186 315.224 622.48 56.9229 92.401 56.819 90.5543

55 316.623 636.339 313.989 630.772 56.8393 94.38 56.6604 91.8796

56 313.886 634.302 314.306 626.74 56.9926 91.6432 56.8668 91.6131

57 316.285 640.792 312.25 627.367 57.0382 91.5493 56.6873 91.8275

58 320.895 641.558 314.677 623.54 56.9854 94.7163 56.8358 91.0681

59 322.426 635.103 319.288 621.794 56.8186 94.2499 56.6319 93.0172

60 318.339 634.281 315.621 627.073 56.9656 93.3501 56.6606 93.8003

61 320.518 629.81 313.448 617.635 57.1212 92.0155 56.743 92.3425

62 319.192 636.001 315.107 619.992 56.9131 92.1162 56.764 91.5158

63 321.941 637.206 315.075 674.175 56.9188 92.2805 56.7833 91.4504

64 320.1 633.353 317.133 666.431 57.0765 94.0517 56.7397 91.1646

65 316.021 636.021 313.574 625.213 56.9214 92.1783 56.7502 93.0524

66 317.736 637.913 319.961 623.635 56.8097 94.2574 56.8589 90.2496

67 318.897 635.28 315.016 632.502 56.949 92.2331 56.8504 91.1577

68 317.526 640.842 313.494 623.817 56.966 94.9444 56.6479 91.8856

69 317.967 633.72 315.02 623.978 57.0885 91.8362 56.6392 92.1431

70 318.335 641.812 316.134 626.033 56.9062 91.7786 56.8347 92.3844

71 316.929 637.779 313.061 626.316 56.8684 93.315 56.8383 92.5953

72 317.905 638.729 311.967 627.543 57.028 92.8946 56.6964 91.4264

73 317.011 633.496 315.293 620.725 57.0377 92.2739 56.6975 93.3162

74 317.497 631.598 315.638 621.432 56.9354 94.7177 56.7671 91.2687

75 315.613 638.801 315.123 628.937 56.9129 94.4715 56.8517 90.8369

76 315.228 633.443 317.299 619.111 57.0138 93.0534 56.679 92.1561

77 319.568 635.717 313.32 617.643 56.8708 94.0017 56.6531 91.4744

78 315.28 635.669 312.817 639.08 56.956 91.0853 56.7399 91.0825

Continued on next page

76

Table F.3 – continued from previous page

Events SB CPU LB CPU SM CPU LM CPU SB GPU LB GPU SM GPU LM GPU

79 312.189 638.198 319.035 628.254 56.8856 93.8419 56.762 91.1963

80 317.128 636.207 313.39 624.873 57.0389 93.5832 56.9052 92.1684

81 321.068 635.257 317.81 623.291 56.9676 94.5498 56.8341 91.5094

82 315.558 634.026 314.784 633.334 57.0167 92.5997 56.8334 93.9118

83 316.719 629.716 315.318 622.476 56.8687 91.7519 56.6493 92.8766

84 317.833 636.363 312.753 626.102 56.9779 92.9861 56.8124 94.1468

85 317.22 640.01 312.312 637.749 56.8061 93.9571 56.6881 91.3004

86 318.81 641.49 314.317 625.762 56.8697 92.3616 56.8316 91.4182

87 314.966 632.147 316.5 619.12 56.9178 94.1009 56.8215 91.6478

88 317.396 635.126 315.273 619.186 57.0847 93.3692 56.8636 91.0651

89 316.113 638.566 315.567 634.533 56.8984 93.8183 56.9485 91.4977

90 318.241 642.984 316.766 624.654 56.8726 91.71 56.7729 91.4903

91 317.309 638.839 313.682 622.968 56.8897 94.5237 56.7063 92.728

92 318.524 639.166 317.07 626.768 56.9673 94.1277 56.7357 92.2819

93 317.032 636.477 318.321 636.919 57.0142 92.6922 56.7876 91.2981

94 319.395 637.979 316.637 624.007 57.1011 94.361 56.8256 92.2703

95 315.955 634.894 313.991 626.747 56.9203 91.9113 56.8243 94.2366

96 316.867 637.25 316.223 633.234 56.9941 92.741 56.9016 92.1287

97 317.254 633.589 313.603 625.673 57.0684 93.843 56.6861 90.8741

98 318.888 637.862 313.037 627.081 57.0931 92.4767 56.7543 92.2072

99 317.633 640.664 310.596 622.362 56.8937 94.2231 56.6375 92.2826

100 321.062 632.418 314.432 632.743 56.9874 94.0779 56.8707 91.5797

Table F.3: Execution Time for Experiment 3.

77

Bibliography

BAS04. Ravi Budruk, Don Anderson, and Tom Shanley. PCI Express System Ar-
chitecture, volume 1.0 of PC System Architecture Series. MindShare, Inc.,
Boston, 2004.

Ber10. Berkeley University. Bonic. http://bonic.berkeley.edu/, 2010.

BhS07. P. Bhattarakosol and V. Suttichaya. Multiple Equivalent Scale Scan: An
Enhancing Technique for Malware Detection. In IEEE 2nd Int. Conf. on
Systems and Networks Communications, page 71, 2007.

CDD09. Sylvain Collange, Yoginder S. Dandass, Marc Daumas, and David Defour.
Using graphics processors for parallelizing hash-based data carving. In 42nd
Hawaii International Conference on System Sciences, pages 1 – 10. IEEE,
2009.

Cla09a. ClamAV. About clamav. http://www.clamav.net/, 2009.

Cla09b. ClamAV. Creating signatures for clamav.
http://www.clamav.com/doc/latest/signatures.pdf, 2009.

Cla09c. ClamWin. Free antivirus for windows. http://www.clamwin.com/, 2009.

Coh86. F. Cohen. Computer Viruses. PhD thesis, University of Southern California,
1986.

Coh87. F. Cohen. Computer viruses - theory and experiements. Computers & Se-
curity, 6:22–35, 1987.

Dam10. Damn Small Linux. Minimum hardware requirements.
http://www.damnsmalllinux.org/wiki/index.php/Minimum Hardware Requirements,
Accessed July 2010, 2010.

Eil05. Eldad Eilam. Reversing: Secrets of Reverse Engineering. Wiley Publishing,
Inc., 2005.

For04. Richard Ford. The Wrong Stuff? [computer viruses]. Security & Privacy,
IEEE, 2(3):86–89, May-June 2004.

Hey07. Karen Heyman. New Attack Tricks Antivirus Software. Computer, 40(5):18–
20, May 2007.

HHL08. Nen-Fu Huang, Hsien-Wei Hung, Sheng-Hung Lai, Yen-Ming Chu, and Wen-
Yen Tsai. A gpu-based multiple-pattern matching algorithm for network
intrustion detection systems. In 22nd International Conference on Advanced
Information Networking and Applications - Workshops, pages 62 –67. IEEE,
2008.

78

HMH09. Guang Hu, Jianhua Ma, and Benxiong Huang. High throughput implemen-
tation of md5 algorithm on gpu. In IEEE. IEEE, 2009.

HoW04. Jin Young Hong and May D. Wang. High speed processing of biomedical
images using programmable gpu. In 2004 International Conference on Image
Processing (ICIP), pages 2455 – 2458. IEEE, 2004.

HTA08. Phuong Hoai Ha, Philippas Tsigas, and Otto J. Anshus. The Synchronization
Power of Coalesced Memory Accesses. In DISC 2008, LNCS 5218, pages
320–334. Springer-Verlag Berlin Heidelberg, 2008.

Int00. Intel Corporation. Using streaming simd extensions (sse2) to perform big
multiplications. Intel Product Information 2.0, September 2000.

Int05. Intel Corporation. Intel Pentium 4 Processor on 90 nm Process, datasheet
edition, February 2005.

Int08. Intel Corporation. Processors: Define sse2 and sse3.
http://www.intel.com/support/processors/sb/CS-030123.htm, Accessed
July 2010, 2008.

Int10a. Intel Corporation. Intel hyper-threading technology (intel ht tech-
nology). http://www.intel.com/technology/platform-technology/hyper-
threading/, 2010.

Int10b. Intel Corporation. Intel developer network for pci express architecture.
www.intel.com/technology/pciexpress/index.htm, Accessed July 2010.

JaB06. Nigel Jacob and Carla Brodley. Offloading ids computation to the gpu.
In 22nd Annual Computer Security Applications Conference (ACSAC ’06),
pages 14 –18. IEEE, 2006.

Jur08. Mario Juric. Notes: Cuda md5 hashing experiments.
http://majuric.org/software/cudamd5/, 2008.

Kel09. Jim Kelly. Defeating AntiVirus Software. Hakin9, pages 28–34, January
2009.

KoM09. Charalampos S. Kouzinopoulos and Konstantinos G. Margaritis. String
matching on a multicore gpu using cuda. In 2009 13th Panhellenic Con-
ference on Informatics, pages 14 – 18. IEEE, 2009.

McA09. McAfee. McAfee Acquires Solidcore. Executive summary, McAfee, 2009.

McA10. McAfee Community. W32/wecorl.a 0-day?
http://community.mcafee.com/thread/24056?start=0&tstart=0, 2010.

Mic01. Microsoft Corporation. Windows xp professional system requirements.
https://www.microsoft.com/windowsxp/sysreqs/pro.mspx, Accessed July
2010, 2001.

79

Mic06. Microsoft. Common object file format (coff). MSDN, November 2006. Re-
vision 4.1.

Mic07a. Microsoft Corporation. Digital Signatures for Kernel Modules on Systems
Running Windows Vista, July 2007.

Mic07b. Microsoft Corporation. System requirements for windows vista.
http://support.microsoft.com/kb/919183, Accessed July 2010, 2007.

Mic08. Microsoft. Microsoft Portable Executable and Common Object File Format
Specification. Microsoft Corporation, 8.1 edition, February 2008.

Mic10. Microsoft Corporation. Windows 7 system requirements.
http://windows.microsoft.com/systemrequirements, Accessed July 2010,
2010.

MIT07. The MITRE Corporation. Cve-2007-0870. http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2007-0870, 2007.

MIT09a. The MITRE Corporation. Cve-2009-0238. http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2009-0238, 2009.

MIT09b. The MITRE Corporation. Cve-2009-0556. http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2009-0556, 2009.

MiV08. John Michalakes and Manish Vachharajani. Gpu acceleration of numerical
weather prediction. IEEE, 2008.

NAs02. Network Associates. Advanced virus detection scan engine
and dats. Executive white paper, McAfee Security, 2002.
http://www.mcafee.com/us/local content/white papers/wp scan engine.pdf.

NVI09a. NVIDIA. NVIDIA Compute PTX: Parallel Thread Execution, 1.4 edition,
March 2009.

NVI09b. NVIDIA. NVIDIA CUDA Programming Guide, 2.3.1 edition, 2009.

NVI09c. NVIDIA. NVIDIA CUDA Reference Manual, 2.2 edition, April 2009.

NVI10. NVIDIA Corporation. Cuda zone. http://www.nvidia.com/object/cuda home.html,
2010.

Pau08. Nathanael Paul. Disk-Level Behavioral Malware Detection. PhD thesis, Uni-
versity of Virginia, May 2008.

PCI10. PCI-SIG. Pci express 3.0 frequently asked question.
http://www.pcisig.com/news room/faqs/pcie3.0 faq/PCIe 3 0 External FAQ Nereus.pdf,
Accessed July 2010.

Pie94. Matt Pietrek. Peering Inside the PE: A Tour of the Win32 Portable Exe-
cutable File Format. Microsoft Systems Journal, March 1994.

Pie02. Matt Pietrek. An In-Depth Look into the Win32 Portble Executable File
Format. MSDN Magazine, February 2002.

80

Pup09. Puppy Linux. Minimum hardware requirements.
http://www.puppylinux.org/wikka/MinReq, Accessed July 2010, 2009.

Riv92. R.L. Rivest. The md5 message-digest algorithm. RFC 1321, MIT Laboratory
for Computer Science and RSA Data Security, Inc., April 1992.

Sla10. SlavaSoft Inc. Slavasoft hashcalc: Hash, crc, and hmac calculator.
http://www.slavasoft.com/hashcalc/index.htm, July 2010.

Sta10. Stanford University. Folding@home. http://folding.stanford.edu/English/Main/,
2010.

StL07. Mark Stamp and Richard M. Low. Applied Cryptanalysis Breaking Ciphers
in the Real World. Wiley-Interscience, New Jersey, 2007.

Szo05. Peter Szor. The Art of Computer Virus Research and Defense. Addison-
Wesley, New York, May 2005.

Ubu10. Ubuntu Community. Installation system requirements.
https://help.ubuntu.com/community/Installation/SystemRequirements,
Accessed July 2010, 2010.

Vak10. Nimesh Vakharia. Is it malware? - you make the call. Symantec Security
Blog, January 2010. http://www.symantec.com/connect/blogs/it-malware-
you-make-call, Accessed July 2010.

ViG07. Richard Viney and Richard Green. Gpu-accelerated computer vision on the
linux platform. In Proceedings of Image and Vision Computing New Zealand
2007, pages 143–147, Hamilton, New Zealand, December 2007.

XFX09. XFX. Specification Sheet, geforce 9500 gt edition, 2009.

XiH05. Wang Xiao-yun and Yu Hong-bo. How to break md5 and other hash func-
tions. In EUROCRYPT, pages 19–35, 2005.

YJD09. Wang Yu, Chen Jianhua, and He Debiao. A new collision attack on md5.
Networks Security, Wireless Communications and Trusted Computing, 2009.
NSWCTC ’09. International Conference on, 2:767 –770, April 2009.

YWL07. Yanfang Ye, Dingding Wang, Tao Li, and Dongyi Ye. IMDS: intelligent mal-
ware detection system. In KDD ’07: Proceedings of the 13th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages
1043–1047, New York, NY, USA, 2007. ACM.

81

Index

The index is conceptual and does not designate every occurrence of a
keyword.

128b/130b encoding, 16

8b/10b encoding, 16

Black Listing, 8

C/C++, 24

cache hit, 23

cache misses, 23

Clam AV, 40

ClamAV, 30

ClamWin, 31

compiler driver, 24

Compute Capability, 29

conditional statements, 18, 19

constant, 20

constant memory, 23

cubin, 24

CUDA, 17, 23

CUDA context, 28

CUDA driver, 26

CUDA libraries, 29

CUDA Runtime API, 28

CUDA Software Stack, 26

device, 24

direct memory access, 14

DLL, 6

Dynamically Linked Library, see DLL

false negatives, 10

false positives, 10

forensics data carving, 32

FORTRAN, 24

GeForce 9500 GT, 29, 59

global memory, 20

GPU, 16

grid, 17

host, 23, 24

Import Address Table, 6

Intel, 13

kernel, 23

kernels, 17, 19

local memory, 20, 22

McAfee, 10

MD5, 11

memory, 18

memory bank, 22

MIMD, 17

Multiple Equivalent Scale Scan, 34

NVCC, 24

NVIDIA, 23

PCI Express, 29

PCI Express 2.0, 14

PE, 4

Pentium 4, 13

Portable Executable, see PE

pre-fetching, 23

PTX, 24, 25

82

registers, 22, 23

relative virtual addresses, 6

Ronald Rivest, 11

shared memory, 20, 22

SIMD, 17

SIMT, 17

SPMD, 17

Streaming Multiprocessors, 17

Streaming SIMD Extensions 2, 13

Streaming SIMD Extensions 3, 13

string matching, 33

synchronizing, 22

texture memory, 20, 23

thread, 17, 23

thread block, 17

thread blocks, 19

transaction layer packets, 15

warp, 18, 19

White Listing, 8

Win32, 4

XFX, 29

83

Standard Form 298 (Rev. 8/98)

REPORT DOCUMENTATION PAGE

Prescribed by ANSI Std. Z39.18

Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing the burden, to the Department of Defense, Executive Services and Communications Directorate (0704-0188). Respondents should be aware
that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB
control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (Include area code)

16-09-2010 Master's Thesis Sept 2008-Sept 2010

Accelerating Malware Detection via a Graphics Processing Unit

N/A
Nicholas S. Kovach

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way, WPAFB OH 45433-7765

AFIT/GCO/ENG/10-12

688th Information Operations Wing
Attn: Mr. Robert J. Kaufman
102 Hall Boulevard, Suite 345
San Antonio, TX 78243
(210) 977-5377; robert.kaufman@lackland.af.mil

688th Information Operations Wing

Approval for public release; distribution is unlimited.

Real-time malware analysis requires processing large amounts of data storage to look for suspicious files. This is a time consuming
process that (requires a large amount of processing power) often affecting other applications running on a personal computer. This
research investigates the viability of using Graphic Processing Units (GPUs), present in many personal computers, to distribute the
workload normally precessed by the standard Central Processing Unit (CPU). Three experiments are conducted using an industry
standard GPU, the NVIDIA GeForce 9500 GT card. Experimental results show that a GPU can calculate a MD5 signature hash and
scan a database of malicious signatures 82% faster then a CPU for files between 0 - 96 kB. If the file size is increased to 97 - 192 kB
the GPU is 85% faster than the CPU. This demonstrates that the GPU can provide a greater performance increase over a CPU.
These results could help achieve faster anti-malware products, faster network intrusion detection system response times, and faster
firewall applications.

malware detection, graphics processing unit, GPU, NVIDIA CUDA, parallel static detections

U U U UU 97

Dr. Barry E. Mullins

(937) 255-3636, ext 7979; barry.mullins@afit.edu

Reset

